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Parallel computing:
Scalability and its
limitations



It is challenging to distribute the work-lgad homogeneously




The space-filling Peano-Hilbert is used in GADGET-2 for the
domain-decomposition

SPLITTING UP THE TREE FOR DIFFERENT PROCESSORS

Fiducial global quad tree
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In a parallel code, numerous sources of performance losses can limit
scalability to large processor numbers
TROUBLING ASPECTS OF PARALLELIZATION

» Incomplete parallelization
The residual serial part in an application limits the theoretical speed-up one can
achieve with an arbritrarily large number of CPUs ('Ahmdahl's Law'), e.g. 5%
serial code left, then parallel speed-up is at most a factor 20.

» Parallelization overhead
The bookkeeping code necessary for non-trivial communication algorithms
increases the total cost compared to a serial algorithm. Sometimes this extra
cost increases with the number of processors used.

» Communication times
The time spent in waiting for messages to be transmitted across the network
(bandwith) and the time required for starting a communication request (latency).

» Wait times
Work-load imbalances will force the fastest CPU to idly wait for the slowest one.

Strong scaling: Keep problem size fixed, but increase number of CPUs

Weak scaling: When number of CPUs is increased, also increase the problem size
As a rule, scalability can be more easily retained in the weak scaling regime.

—» |n practice, it usually doesn't make sense to use a large number of
processors for a (too) small problem size !




Amdahl's law provides a fundamental limit for the speed-up that can be

achieved in a parallel code

THE IMPLICATIONS OF A RESIDUAL SERIAL FRACTION

Two independent parts

Speed up for serial fraction F on N processors:

Example: If F = 5%, then the speed up is
at most 20, no matter how many
processors are used!

“The first 90% of the code accounts
for the first 90% of the development
time. The remaining 10% of the code
account for the other 90% of the
development time.”

- Tom Cargill, Bell Labs
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time per full step [sec]

For fixed timesteps and large cosmological boxes, the scalability of

the GADGET-2 code is not too bad

RESULTS FOR A "STRONG SCALING" TEST (FIXED PROBLEM SIZE)
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Ncpu

For small problem sizes or
Isolated galaxies, the
scalability is limited

RESULTS FOR "STRONG SCALING"
OF A GALAXY COLLISION
SIMULATION

CPU consumption in different code parts
as a function of processor number

communication and imbalance
M domain decomposition
particle stepping
tree construction
B gravitational potential

B tree walk



The cumulative execution time of the tree-walk on each processor
can be measured and used to adjust the domain decomposition

BALANCING THE TOTAL WORK FOR EACH PROCESSOR

Tree walk for local particles Tree walk for imported particles

- elapsed time do to the assigned work in each step
A

work Z Ttreewalk

|-
-

cpu 0 [
cou 1 | T —
cpu 2 I

cou 3 I . ot times
cou 4 I e (osses)
cpu 5 I

cpu 6

cpu 7

— p» The total CPU-time for the tree-walks per step can be made
roughly equal for each MPI task



The communication between the two phases of a step introduces a
synchronization point in GADGETZ2's standard communication scheme
LOSSES DUE TO IMBALANCE IN DIFFERENT COMMUNICATION PHASES
The situation after work-load balancing:

cpu 0 N ——

cpu 1 N ——

cpu 2 I —

cou 3 | S — wait times
cou 4 Iy (losses)

This is what actually happens once the communication step is accounted for:

communication phase



The communication itself consumes some time and also induces
additional wait times

LOSSES DUE TO COMMUNICATION TIMES IN ONE GRAVITY STEP

This is the real situation in GADGET-2....

wait times communication communication
(losses) times times

L one timestep




An improvement of scalability may be possible with asynchronous

communication

POSSIBLE OPTIONS FOR ASYNCHRONOUS COMMUNICATION

One-sided communication?

Available with MPI-2.... but:

 rather restrictive API

e complicated communication semantics

» active and passive target one-sided
communications are supported, but both

require explicit synchronisation calls

» progress of passive target mode may rely on
MPI-calls of target (e.g. MPICH2)

Use MPI's asynchronous two-sided
communication?

Available with MPI-1
» use buffered sends (MPIl_Bsend)

* use asynchronous receives with explicit
checks for completion (MPI_Irecv)

» use MPI_Probe to test for incoming messages

ORIGIN TARGET
PROCESS PROCESS
1
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Asynchronous communication and a pipelining approach could
eliminate the mid-step imbalance losses in the gravity step

FLOW-CHART FOR ONE TIMESTEP IN AN ALTERNATIVE COMMUNICATION SCHEME

- do local send out work packages launch an asynchronous
particles (asynchronously, returns receive for each incoming
immediately) message

rocess messages once the . .
Eave arrived. Isgit a work Y P FLllgel g CERBELE RS - send result (asynchronous)

package, or the result for one +
sent out myself? ~—— | addresults to particles -,

A

more receives pending?

Vno

: , all particles done? Yes . g
This scheme may reduce imbalance losses. timestep

done

. . . Overlap can be realized on:
It can also overlap communication and computation. . gy powers
* |IBM Bluegene
* Infiniband Cluster (MVAPICH)

. . * SMP boxes
This scheme should give: «  Myrinet/Quadrics




On many systems, asynchronous communication still requires a
concurrent MPI call of the other process to ensure progress

TIME-LINE OF EVENTS IN AN ASYNCHRONOUS SEND .
Computations

CPUA E e i

message put
into send buffer

receive request
posted, data Ideal asynchronous case

‘ picked up
CPUB IO I © e

P> Time

Wait

CPUA e *_

message put
into send buffer

receive request
posted What really happens on many systems

CPUB _4_._

- Time

CPUA I © [ ——

message put
into send buffer

CPUB _4__0_
>Time

receive request
posted Synchronous case




The inhomogeneous
particle distribution
and the different
timesteps as a
function of density
make it challenging
to find an optimum
domain
decomposition that
balances work-load
(and ideally memory-
load)

PARTICLE
DISTRIBUTION IN AN

EXPONENTIAL DISK




GADGET-1
used a simple
orthogonal
recursive
bisection

EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-1




GADGET-2
uses a more
flexible space-
filling Peano-
Hilbert curve

EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-2




GADGET-3
uses a space-
filling Peano-
Hilbert curve
which is more
flexible

EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-3




The new domain decomposition scheme can balance the work-load and
the memory-load at the same time but requires more communication
THE SIMPLE IDEA BEHIND MULTI-DOMAINS

The domain decomposition partitions the space-filling curve through
the volume

GADGET-2
GADGET-3

—» But: @ Need a more efficicient domain
decomposition code

@ Need a tree-walk scheme that doesn't slow
down if there are more domains

@ Need a new communication strategy for the
PM part of the code



The new code scales substantially better for high-res zoom simulations of
Isolated halos
A STRONG SCALING TEST ON BLUEGENE OF A SMALL HIGH-RES HALO

“Gadget 3”
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Changing from the tree domain decomposition to the slab
decomposition needed for the FFTs is a non-trivial problem

ACCOMDATING THE SLAB DECOMPOSITION

Simply swapping the particle @ Memory-load can become hugely imbalanced
set into a slab decomposition is (especially for zoom simulations)
in general not a good idea
@ Work-load in binning and interpolating off the grid
very imbalanced

@ Ghost layers may require substantial memory if
number of CPUs not very different from 1-d grid
resolution



Shared memory can be easily used for near perfect loop-level parallelism
USING MULTIPLE CORES WITH THREADS

timestep

single threaded

quad-core node

wallclock

time

cpu0 cpul1 |cpu2 |cpu3 |
h
A
| «
4
MPI tasks

multi threaded

| quad-core node |

cpu0 cpu1 |cpu2 |cpu3 |
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wallclock Threads
time MPI task

Threads are light-weight. Unlike processes, the
creation/destruction takes almost no time.

They inherit all global variables and resources
(e.g. open file) from their parent process/thread.

Mutual exclusion looks need to be used where
needed to avoid race conditions.

How to get them?

« POSIX/System-V Threads

« OpenMP

GADGET-3 does now support multi-threading in combination with MPI



Code development in GADGET continues...
PRIMARY NEW FEATURES OF GADGET-3

New domain decomposition for multiple domains, leading to
better scalability of the code. Domain decomposition code
itself is much faster for large processor numbers.

Speed improvement of tree-walks by eliminating
parallelization overhead. (required extensive rewrites of
SPH and tree communication)

Improved memory handling of code, reducing peak usage.

Much more accurate and detailed internal accounting of
CPU time consumption, including informative, human-
readable output for every timestep.

Speed improvements in neighbor search, tree construction
and updates, and in generation of Peano-Hilbert keys

New PM code which is work-load balanced even for zoom
simulations.

Mixed distributed/shared memory parallelism via MPI+Pthreads

Should be quite a bit better than the old version... and hopefully public reasonably soon.



Issues of floating point
accuracy



Parallelization may change the results of simulations
INTRICACIES OF FLOATING POINT ARITHMETIC

On a computer, real numbers are approximated by floating point numbers

Bit

31 24|93 1615 8|7 0
a 32 bit float S| E|EIE|E|E|EIE|E|M{N|hAIMA AN IMA] MR RA (AR DA 1A (A (RA A (A (WAIRA 1R (A
Exponent Mantisse
Vorzeichen

\J _2556159...—a

-

v=(-1)"(1,mgmyms...

Mathematical operations regularly lead out of the space of the
representable numbers. This results in round-off errors.

One result of this is that the law of associativity for simple additions doesn't
hold on a computer.

A+(B+C) # (A+B)+C



In the parallelization scheme of GADGET-2, tree walks may be split
up into parts that are carried out by different processors
HIERARCHICAL TREE ALGORITHMS
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As a result of parallelization, the calculation of the force may be split to up
onto different processors

THE FORCE SUM IN THE PARALLELIZED TREE ALGORITHM

The tree-walk results in typically several hundred multipole forces Multipole force

Situation 1:
000000 000000 00OC0OQCOGOOOOC
cpu 0 cp¢u 1 cpj 2
A B Cc
Situation 2:

000000000000 000000OOO

cpu 0 crlu 1
BI

When the domain decomposition is changed, round-off differences are introduced
into the results

Al

A+B+C # A'+PB



Consequences of round-off errors in collisionless systems
THE LIMITED RELEVANCE OF INDIVIDUAL PARTICLE ORBITS

As the systems are typically chaotic, small perturbations are quickly amplified.

= Since in tree codes the force errors discontinuously depend on the particle coordinates,
small differences from round-off can be boosted in one step from machine epsilon to
the order of the typical average force error.

» Changes in the number of processors modifies round-off errors in the forces of
particles. Hence the final result of runs carried out on different numbers of processors
may not be binary identical.

» Changing the compiler or its optimizer settings will also introduce differences in
collisionless simulations.

Convergence in collisionless simulations can not be achieved on a
particle-by-particle basis.

However, the collective statistical properties of the systems do converge.

Individual particles are noisy tracers of the dynamics!



Basics of SPH



The governing equations of an ideal gas can also be written in

Lagrangian form

BASIC HYDRODYNAMICAL EQUATIONS

ideal monoatomic gas:

Euler equation: d_V — —E — Vo

d¢ 0
Continuity equation: i—i +pV - v =
First law of du B PV A(u, p)
thermodynamics: a — _; 'V P
Equation of state of an P — (,}, _ 1)pu , v = 5/3




What is smoothed particle hydrodynamics?
DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian
discretize space discretize mass
representation on a mesh representation by fluid elements
(volume elements) (particles)
/L| Pal / // S
b f °
principle advantage: principle advantage:
high accuracy (shock capturing), low resolutions adjusts
numerical viscosity automatically to the flow
o collapse 00,
o ® . o . P > .}.ﬁ..



SPH can be readily combined with collisionless simulations of dark matter
A SIMULATED CLUSTER WITH GAS

gas density gas temperature

dark matter density




Kernel interpolation is used in smoothed particle hydrodynamics to
build continuous fluid quantities from discrete tracer particles
DENSITY ESTIMATION IN SPH BY MEANS OF ADAPTIVE KERNEL ESTIMATION

30 1

—
. ) .. - SPH kernel (B-spline)
Kernel interpolant of an arbitrary function: 25F-normalized to 1

(A(r)) = /W(r _ ¥ ) A() &

= 15F
If the function is only known at a 05t
set of discrete points, we PBr' m; of |

approximate the integral as a 10 a5 00 05 10

sum, using the replacement:

(A =S 2L A W (ry; b))

jlpj

This leads to the SPH density estimate, for A; = p;

—» This can be
Z m] |rzj| h; ) differentiated !




Good kernel shapes need to fulfill a number of constraints
CONDITIONS ON KERNELS

» Must be normalized to unity

» Compact support (otherwise N2 bottleneck)

» High order of interpolation

» Spherical symmetry (for angular momentum conservation)

Nowadays, almost exclusively the cubic spline is used:

L

25

o [ 1-6P+6u, 0<usy, 20
Wu)=—-< 2(1—u), Leu<t1, =180
T 2 :

0, u>1. tof-

\
05F

00E . 1 .

-1.0 -05 0.0 05
rih



Kernel interpolants allow the construction of derivatives from a set
of discrete tracer points
EXAMPLES FOR ESTIMATING THE VELOCITY DIVERGENCE

Smoothed estimate for the velocity field:

(Vi) = > Do v W(r — ;)

- Pj
J
Velocity divergence can now be readily estimated:
m .
V-v=V.(v;) = Zp—:ijvng(ri—rj)
i M7

But alternative (and better) estimates are possible also:

Invoking the identity
oV -v=V - (pv) —v-Vp

one gets a “pair-wise” formula:

pi(V Z m;(v; —v;) ViW(r; — r;)



Smoothed particle hydrodynamics is governed by a set of
ordinary differential equations

BASIC EQUATIONS OF SMOOTHED PARTICLE HYDRODYNAMICS

Each particle carries either the energy or the entropy per unit
mass as independent variable

i : Continuity equation
Density estimate ij (lrijl, i) > Jitomatically fulfilled.

= Pi=(y = Dpiu

I,
h N~ ~  Artificial viscosity
dv; N P, P _
Euler equation = — Z m; —2?' + —g‘ VW
dt j=1 Pi D5
N
First law of dui_lzm, E-I-& Vii e W .
thermodynamics dt 24 ‘ J 07 24 "W ey
= (A ]



Viscosity and shock
capturing
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An artificial viscosity needs to be
iIntroduced to capture shocks
SHOCK TUBE PROBLEM AND VISCOSITY

viscous force:

dV?;
dt

N
— — Z ijisz-Wij

visc 71=1

parameterization of the artificial viscosity:

alcitej—3wijlwi; 0
) =3 - if vij-r; <0
1l;; = Pij
17 .
0 otherwise
sig
Vi = G + ¢j — Swgy,

Wi; = Vij - Tij/|rij)

heat production rate:
dt 2 “




SPH can handle
strong shocks
and vorticity
generation

A MACH NUMBER 10
SHOCK THAT
STRIKES AN
OVERDENSE CLOUD

0.00

0.50

1.00

1.50

2.00




SPH accurately conserves all relevant conserved quantities
in self-gravitating flows

SOME NICE PROPERTIES OF SPH

% Mass is conserved

Y% Momentum is conserved
% Total energy is conserved — also in the presence of self-gravity !

% Angular momentum is conserved

% Entropy is conserved — only produced by artificial viscosity, no
entropy production due to mixing or advection

Furthermore:
% High geometric flexibility

% Easy incorporation of vacuum boundary conditions

% No high Mach number problem



Variational derivation of
SPH



The traditional way to derive the SPH equations leaves room
for many different formulations
SYMMETRIZATION CHOICES

W(|ri|, [hi + hj]/2)

Symmetrized kernel:

DN | —

Wi
Wi W (|ri;], hi) + W(|ri;], hy)]

Symmetrization of pressure terms:

| 1 (P P P; P;
Usig VP = 2V/PVVP s\t ) = e
1 i (2R

Is there a best choice?



For an adiabatic flow, temperature can be derived from the

specific entropy
ENTROPY FORMALISM

Definition of an
entropic function:

for an adiabtic flow:

don't integrate the temperature,
but infer it from:

Use an artificial viscosity to
generate entropy in shocks:

P = A p]

U; = AZ pﬁy_l

v—1
d4; 1y-1&

— — Zmﬂz—'v@ VZWZ
dt 2 4 T =~ jHtig Vi J



None of the adaptive SPH schemes conserves energy and
entropy simultaneously

CONSERVATION LAW TROUBLES

Hernquist (1993): o
If the thermal energy is integrated,

entropy conservation can be violated...

If the entropy is integrated, total energy
IS not necessarily conserved...

The trouble is caused by varying smoothing lengths... Vh -terms

Do we have to worry about this? YES

Can we do better? YES



A fully conservative formulation of SPH

DERIVATION

Lagrangian:

Constraints:

Equations of motion:

L(

Springel & Hernquist (2002)

1 1 & )
- N '2 f)/_
q,q) = B Zmz’rz‘ - 7 Z m; A p;
q= (rl,...,rN,hl,...,hN)

4
dbl(q) = ?hr?pz — MSph =0

71=1
dVi N Pf:, ]DJ
= — ij fg_QVzVsz(hz) - fj QVZVVU(h])
h@' ap@' !
4 [1 3_Pz‘3hz‘]




Does the entropy
formulation give better
results?
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letely unphysical result (no explosion at all)
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@ Geometric formulat

ion gives comp

@ Standard energy formulation produces severe error in total energy, but asymmetric form ok

@ Standard entropy formulation ok, but energy fluctuates by several percent
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There is a well- 4
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solution for

strong point-like
explosions 3
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energy, geometric
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There is a well- 4
Known similarity
solution for

strong point-like
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The new conservative formulation gives better results for
adiabtic flows

EXPLOSION PROBLEM

energy,standard energy,geometric AT T I T[T T T I T T T [T T T T T T[T T T T T T T T[T T T T T 1]
F - t=0.040
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Cooling of gas is extremely efficient in high-resolution
simulations of galaxy formation
CLUSTER RUNS WITH AND WITHOUT COOLING

SO_A (adiabatic) SO_C (cooling only)

Yoshida, Stohr, White & Springel (2001)



Fluid elements should lose entropy only by radiative cooling
DECLINE OF ENTROPY IN COOLING FLOW REGION

low resolution
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» Entropy formulation is much less prone to

overcooling when the resolution is poor



Neighbor search in SPH
RANGE SEARCHING WITH THE TREE

An efficient neighbor search is the
most important factor that
determines the speed of an SPH code

But: A simple search radius is not
always sufficient, since for the
hydro force we need to find all
particles with

r; —r;| < max(h;,h;)

Solution: Store in each tree node the
maximum h of all particles in the node.
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