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Motivation

why solve the classical field equations of general relativity, in
particular using numerical methods?

= understanding gravity

gravity is one of the fundamental forces of nature, and barring questions
about our understanding of dark matter and dark energy, general relativity
is the only theory of gravity consistent with all existing tests and
observations of the universe where gravity plays an significant role

thus, it is important (and interesting!) to understand the full consequences
g)ft the u which means so/ving the equations to describe situations of
Interest

however, the field equations are quite complicated and non-linear, and
analytic solutions only exist in a few special cases

global methods have been extremely successful in uncovering general
properties of spacetime, though do not give any details on specific scenarios

perturbative techniques work in weak-field, slow-motion scenarios; in the
dynamical, strong field regime, numerical methods are required
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Outline

General Relativity
= motivation : why solve the classical field equations?
= mathematical structure of the field equations
general covariance and the character of the field equations.
= properties of typical solutions

smooth solutions, though large range of dynamical length scales
singularities inside of black holes

= computational techniques
overview of elementary finite difference methods and principles
project: wave propagation on a black hole background

= basics of black hole physics

= solving hyperbolic PDEs with RNPL

Motivation

why solve the classical field equations of general relativity, in
particular using numerical methods?

= gravitational wave astronomy

a new generation of gravitational wave detectors, including LIGO, GEO,
VIRGO and the planned space mission LISA, and inferences from pulsar
timing and CMB polarization measurements, hold promise to open up the
universe to observation in the gravitational wave spectrum

however, the weak nature of gravitational waves makes “direct” observation
essentially impossible with this generation of ground-based detectors; the
only way one could see gravitational wave sources is through some form of
matched filtering, where template waveforms are convolved with the signal

thus, understanding the detailed nature of gravitational waves from
expected sources is crucial to realize the full potential of gravitational wave
astronomy

the final stages of compact object mergers (black holes, neutron stars)
occur in the regime where full'numerical solution is required




General Relativity

In general relativity there is no gravitational “force”; rather, the postulate is
we live in a 4-dimensional curved spacetime, and it's curvature of the
spacetime that we feel as the gravitational force.

it is convenient to describe the geometry by a metric tensor g,, , defined via
the line element (a generalization of Pythagoras’ thm.):

ds’ = g,,dx“dx”

= note that g,, has Lorentzian signature (-1,1,1,1), and distances can be positive
(spacelike), negative (timelike) or zero (null).

The Einstein equations tell us what class of geometries are physically viable
iven the stress ener ¥1tensor of matter in the spacetime, and suitable
oundary conditions ?t e rest of the lectures will use geometric units, in

which G=c=1)

8xG

Mathematical Structure of the field
Equations

Written as just described, the equations have no definite
mathematical character (i.e. , elliptic, hyperbolic or
parabolic). This is largely due to the general covariance
of the theory, namely that a given physical geometry can
be represented in infinitely many forms, differing from
each another via coordinate transformations

= everyrepresentation of a given spacetime satisfies the same
field equations

implies that without “fixing” the coordinates in some manner the
equations are ill-posed (N0 uniqueness)
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General Relativity

The Einstein tensor G, is constructed from the metric tensor g, as follows:

r:c = % gae(gbe,c + goe,b - gbc,e)

Ry =Maa ~Tba +Tala —Mala

1
(C =Rab_ER|]ilab

The result then is that the Einstein equations, written in terms of the metric
tensor, form a system of 10 coupled, second order, quasi-linear partial
differential equations for the 10 unique components of the metric

= these are the equations that must be solved to deduce the geometry of a
scenario of interest

Mathematical Structure

two main decompositions of the field equations
= 3+1 (space+time)

typically get a coupled system of 4 elliptic (constraint)
equations, 6 hyperbolic (evolution) equations, plus 4 freely
specifiable gauge “equations”

must specify a gauge; effectively then have 10 equations for
6 remaining degrees of freedom

traditionally, two methods of solving this system as an initial
boundary value problem

= free evolution — solve the constraints at the initial time only, then
evolve the gauge and evolution equations forwards in time

= constrained evolution — solve the constraints at every time step,
together with "2” of the evolution equations



Mathematical Structure

two main decompositions of the field equations

= 3+1 (space+time)

with either choice (free or constrained), at the analytical
level (depending on the details of the particular formalism),
one can show, using various identities, that a solution to the
particular sub-system of equations will also solve the full
system of equations

numerically, the above property only holds to within
truncation error — this can lead to problems, in particular
with free evolution schemes, that often exhibit exponential
growth of constraints in generic (3D) scenarios

= the non-linearity of the field equations prevent the constrained-
transport techniques developed for the similar problem in Maxwell’s
from working in GR

Mathematical Structure

two main decompositions of the field equations

= 3+1 (space+time)
= a null, or characteristic decomposition

1 or 2 of the coordinates are chosen to be to null, the rest
spacelike

can be formulated so that there are no constraints, though
the main problem is that to date there have been no serious

roposals on how to deal with caustics that will generically
‘orm along the null directions

Cauchy-characteristic matching proposes to use a Cauchy
(3+1) code for interior, strong-field evolution, and a
characteristic code for far-field evolution
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Mathematical Structure

two main decompositions of the field equations

= 3+1 (space+time)

to date, only 2 free evolution schemes (of ~10’s to 100°s

proposed) known to not suffer from exponential constraint

growth in “generic” scenarios — BSSN (Baumgarte-Shapiro-
hibata-Nakamura), and generalized harmonic

= in lecture 2 will look at the ADM (Arnowitt-Deser-Misner) formalism in
detail, which is the starting point of BSSN; in lecture 4 we will briefly
overview the generalized harmonic and BSSN formalisms

= ADM, though problematic in general, works well in symmetry reduced
spacetimes ... will look at a sphericafly symmetric example

Some basic properties of solutions influencing
choice of numerical solution methods

Barring “pathological” coordinates, the geometry of most
spacetimes of interest will be continuous and free of shocks,
turbulence, discontinuities, etc., even when coupled to matter that
does have these features

= can intuitively see why from the field equations, as second derivatives
of the metric couple to the stress/energy ... even a delta function in the
stress/energy tensor with get “smoothed out” to a C° function.

Geometric singularities are inevitable in gravitational collapse,
though if cosmic censorship holds (and no indications to-date it
does not for “reasonable” matter), the singularities will always be
hidden inside of black holes, and thus, via causality, cannot
influence the outside universe

= Uuse excision or moving punctures to deal with these singularities
numerically




Some basic properties of solutions influencing
choice of numerical solution methods

Perhaps the most interesting astrophysical scenarios where solving
for the structure of spacetime is important involves compact objects
— black holes and neutron stars — and their interactions. This
typically introduces at least 3 orders of magnitude of spatio-
temporal length scales that need to be resolved

smallest --- compact object radius

medium --- volume in which interesting GR interaction unfolds ... eg.
orbital radius for a binary

largest --- the far-field regime where observable quantities, such as
gravitational wave emission, can be measures

it is difficult to unambiguously measure physically relevant properties of a
geometry in the region of strong interaction ... need to be far away to
observe what happens

Summary of properties > numerics

many non-linear equations with lots of terms
= need lots of flops > parallel computing [lectures 3 & 4]

principle parts of equations in a dqood formulation are simple wave
operators and/or Laplacians, and we expect smooth solutions

= simple basic numerical algorithms will suffice -> finite differencing with
Newton-Gauss-Seidel iteration

is generally a good smoother of the residual, so can form the back-bone of a
multigrid solution of the elliptics

converges very rapidly to the solution given a good initial guess; for
hyperbolic equations the solution at the previous time step provides this if
the time step is not too large (rule of thumb: use the CFL condition even for
a fully implicit scheme)

= finite differencing with method-of-lines (Runge-Kutta) is often used for
free evolution schemes; some groups also use pseudo-spectral methods
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Some basic properties of solutions influencing
choice of numerical solution methods

A comment about the “right hand side”

= “normal” matter only couples to the /oca/ geometry

mathematically, the coupling is to lower order terms in the
sﬁugt[i)%ns, and so will not affect properties nor solution methods of
e PDEs

physically, this is a manifestation of the equivalence principle; i.e.
&n skufﬁcnls_ntly small scales the metric becomes arbitrarily close to
INKOWSKI

u this implies if a computational method for a matter field works in
a special relativistic setting, no additional complications should
arise incorporating it into a general relativity code

Summary of properties - numerics

iven the length scales that need to be resolved, and
that often a priorilack of knowledge of where the small
length scale features are or will evolve to, need adaptive
mesh refinement (AMR)

= because of the smoothness of solutions, and for situations where
the small length scale features are not volume filling (eg.
compact obf‘ects), a simple variant of Berger and Oliger (B&O)
AMR is ideal [lecture 3]

= sol inﬁ coupled elliptics/hyperbolics are a bit more complicated

though, in particular if the recursive time stepping is kept

difficulty boils down to the non-linear nature of the equations




Basics of finite difference solution of PDEs

Denote a general differential system
Lu=f

where £is a differential operator acting on a set of
unknown variables u, and f are a set of pre-specified
“source” functions

Finite-difference discretization of this system involves
samﬁlmg all functions on a mesh, with characteristic
mesh spacing h, and replacing derivative operators with
difference operators

u—-uh, f—f, L eh

Basics of finite difference solution of PDEs

From the form of the difference operators, one can see
that converting a system of PDEs to difference equations
results in a system of (possibly non-linear) algebraic
equations, one set of equations at each mesh point in
the computational domain; represent this system of
equations via

phyh=fh

One step of a numerical algorithm thus involves solving
this system of equations for the unknowns u;"*! at the
advanced timed level n, given “initial data” at past time

levels n, n-1, ... etc.
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Basics of finite difference solution of PDEs

Some common second order accurate difference
operators:

ou(x.t) _ ui, —ul,
X
n+l _ on-1
ou(x,t) U Ty +o(h?)
ot Ah
ou’(x.t) _u, —2u +u]
X2 - 2

+0(h?)

n

=il 45 O(hZ)

here, the lower (upper) index labels space (timeg, h=Ax
and A=Ax/At is the CFL (Courant-Fredrichs-Lewy) factor

Important Concepts/Definitions in FD

The solution error is
&=u—uh

Given a solution u to the continuum differential
equations, the truncation error is

= £hu- o

The discrete solution converges to the continuum
solution if and only if

uh —uin the limit h —0




Important Concepts/Definitions in FD

A necessary condition for convergence is for the
particular FD approximation to be consistent

™ —0in the limit h—»0

The order p of a consistent FD scheme is the rate at
which the truncation error scales to zero with decreasing
mesh spacing

" =0(hP) in the limit h —0

Important Concepts/Definitions in FD

In situations of interest one will not know what the
solution error nor truncation error is. In practice then,
for a stable, consistent p™ order numerical scheme one
assumes the solution aé)mits a Richardson expansion:

u=u+e, hP+e,h?P+ ...

Here, the e, e, ... are error functions (i.e. of space and
time), but are independent of mesh spacing

For simple equations, difference schemes and boundary
conditions, one can prove that a Richardson expansion
exists; for more complication equations (like the Einstein
equations) it empirically does if the finite difference
approgﬂmates are consistent, and the solutions are
SMOoo
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Important Concepts/Definitions in FD

In many cases one can not, or it is too expensive, to
solve the difference equations exactly, and some
iterative method gives an approximate solution u". The
residual " is then

Rh=Loun - fh

A FD scheme is stable if the norm of the solution is
bounded in time by some exponential

|uh|<et

with ¢ a constant /ndependent of h. A consistent FD
scheme is stable if and if only if it converges. Note for
differential equations that develop singular solutions, the
notion of stability is still valid over some time interval
prior to the formation of the singularity

Important Concepts/Definitions in FD

The Richardson expansion allows for two of the most
important tools-of-the-trade in computational physics;
convergence testing and error estimation. These are
performed by comparing solutions obtained at different
resolutions

A standard convergence test uses 3 resolutions: h, 2h
and 4h:

——[=2"+0(h")



Important Concepts/Definitions in FD

If you see convergence, you have (l?aa rather non-trivial
consistency check that the assumed Richardson does
hold, and (2) are adequately resolving the problem so
that the solution you obtain is a decent approximation to
the continuum solution; specifically then, an estimate of
the error in the finest resolution result is

h

~Y voh®)

Similar error estimates can be derived for properties
extracted from the solution; e.g. gravitational waves,
total energy, etc.

Black Holes

There are many forms of the Schwarzschild metric that
are regular on the horizon; we will use the metric in
Ingoing-Eddington-Finkelstein coordinates, written in
terms of ADM variables (defined next lecture)

ds’ = —{a” +a’>B* Jot* +2a’ Adrdt + a’dr?
+r2(d62 +sinZ&i(02)

— r .

2m 1
a=,——,; —_—
r+2m

;a=
r+2m a

ﬂ:

It |25 easy to check that the metric is non-singular at
r=2m
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Black Holes

Black holes are one of the more important and
interesting consequences of general relativity. To get
some experience in how to numerically deal with black
holes in a simulation, we will look at wave propagation
on a Schwarzschild background

The common form the Schwarzschild metric is usually
presented in is

-1
ds? = _(I_Z_m)dtz +(1—2_m) dr? +r2(d6?2 +sin” A¢’
r r

the (“true”) geometric singularity is at r=0; though this
form of the metric also has a coordinate singularity at
r=2m, which can be problematic.

Scalar wave propagation on a
curved background

The covariant wave equation for a massles scalar field ¢
on a general background metric with metric gis

0°0,¢= ﬁaa(ﬁg”ﬁaﬂ): 0

For wave propagation on a Schwarzschild background
we will restrict attention to a spherically symmetric
scalar fields g=¢(rt). It is also convenient to reduce the
wave equation to first order form by introducing the
“conjugate” variables @ and /7

na,b E%(am—mm)



Scalar wave propagation on a
curved background

In terms of @ and /7 the wave equation becomes

1 (o, a
atl'l —r—zar(r |:[§r| +;¢):D

and from the definitions of /7, @ one can derive an
evolution equation for @

a,m:a,(m+%nj

Characteristic structure

I.e., as the event horizon is crossed the light cone “tips
over”, with all characteristics pointing into the black hole

t

inner r—I2m outer
boundary i) boundary
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Complication with black holes

The wave equation on a general background metric with
Lorentz signature is hyperbolic, and can “easily” be
solved with standard techniques, in particular in a black
hole spacetime if the domain excludes the geometric
singularity at r=0.

However, the one complication arising with the black
hole is the event horizon, due to its nature as a one way
boundary to propagation of causal signals, such as
waves

This property of the spacetime manifests itself in the
characteristics of the wave equation; here there are two
radial modes with velocities

Excision

When solving the initial boundary value problem for
hyperbolic equations, one can only place boundary
conditions on degrees of freedom that are propagating /nto
the computational domain

Inside the event horizon, there are no such modes, and
hence one cannot place boundary conditions there. Instead,
one must solve the equations at the inner boundary, with
central spatial difference operators replaced with sideways
operators, .e.g:

This is the idea behind black hole excision, and since the
interior is causally disconnected from the exterior
spacetime, not solving for the interior structure of the fields
will have no effect on the exterior solution




Comment on dissipation

often unwanted hi|9h-frequency solution components (“noise”)
arise with certain FD operators, at refinement boundaries, the
excision surface, near the axis in a spherical or axisymmetric
code, etc.

= at best could cause unphysical reflections, at worst be unstable

Kreiss-Oliger (KO) style dissipation is very effective at reducing
these high frequency parts of the solution. The stencil for this
high-pass filter (which is used to subtract the high-frequency
components from a field) is

&
E(fin —4f, t6f—4f +

= this is the undivided, centered, second order accurate 4t derivative

operator multiplied by a parameter ¢ (<1 for stability). It's
frequency response is esin(&/2) for wave number &, and so
completely filters out waves at the Nyquist limit when e=1.

Solving Hyperbolic PDEs with RNPL

RNPL (Rapid Numerical Prototyping Language), written
by Robert Marsa and Matthew Choptuik, is a tool
designed to aid in the construction of programs to solve
hyperbolic PDEs

Advantages

= provides simple and natural notation to define difference
operators, and to write the difference equations in a form close
to the analytic expressions

takes care of much of the program infrastructure unrelated to
the numerics, in particular file I/O, checkpointing and reading
run-time parameters

Implements a 1-step Newton-Gauss-Seidel (NGS) relaxation
algorithm, which is powerful enough to solve a large class of
non-linear hyperbolic difference equations
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Comments on KO dissipation

NOTE: KO dissif)ation is not artificial viscosit¥ ... it only alters the
solution at the level of the truncation error (L.e., it's effects
“converge away”)

Also, typical 2" order finite difference schemes get the phase
and amplitude evolution of such high frequency components of
the solution completely wrong in any case, and so does not hurt
to get rid of them

practically, the cost is one might need up to a factor of two
more resolution (if large values of € are required) to obtain
ecwivalent solution error compared to stable a non-dissipative
scheme

Solving Hyperbolic PDEs with RNPL

Disadvantanges

= though designed with GR applications in mind, does not provide
native support for excision; notation makes it “messy” to
implement excision in 2 & 3D

does not provide easy mechanism to implement alternative time-
steppers, such as Runge Kutta

would greatly benefit from more features, including support for
elliptic PDEs, AMR, parallel execution (though does provide a
mechanism to interface with external routines to extend
capabilities)

for class of PDEs that it works well for,

temptation to use as a
“black box”, which can be “dangerous/’
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One step Newton-Gauss-Seidel iteration One step Newton-Gauss-Seidel iteration

Perhaps the most important thing to understand about Any single step of a numerical solution scheme can be thought of as
G

RNPL’s inner workings is the NGS relaxation scheme an algorithm that finds values of the unknowns so that residual is
zero, given known values of the grid functions at past time levels

Given a specification of a uniform mesh, a set of 1 step NGS attempts to drive the residual to zero by the following
differences operators, and a set of PDEs and boundary iteration
conditions in the form
n gi linearize the equations about the current guess u for the unknowns
pehyh=fh ropping the “h” superscript denoting the mesh spacing, and using a
subscript to label equation/variable as appopriate)
RNPL constructs a residual for each equation (interior or ® 2 2
= ] (U +du)= R (W+ R, (u) du+ O((du
boundary) at each grid point: {UEGUSSR (et AUt OOP0
= (ii) obtain an approximation to the correction du performing 1 step of a
Rh=ghuh-fh Gauss-Seidel iterative solution of the resulting linear system

Agai q - a approximates the Jacobian matrix o,®; with its the diagonal (i
gain, at each grid point we have a set of non-linear couplings between equations and bétween adjacent mesh poi
?Igebralc equations (equal to the number of unknown " 1ol A .
unctions), that could in genera| depend on discretized in the inner loop of the iteration, immediately replaces the unknown with its
h A f ; xt bef to the Xt bl
values of all variables at all grid points and all time levels ASXEGHESS BERIE MOVING O e HE NEENERARE

One step Newton-Gauss-Seidel iteration

This scheme converges quite rapidly for hyperbolic
equations, given a good Initial guess

since hygerbolic equations have finite propagation speeds, using
the solution from the previous time step is a good initial guess

will converge in 1 step for an explicit, linear equation

typically can drive the residual to below truncation error with
several iterations for the Einstein equations

Easiest to introduce RNPL notation by looking at a sample
code ... see:

http://physics.princeton.edu/~fpretori/group_resources/index.html
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