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AMR

= Adaptive Mesh Refinement is a technique to make the solution of discrete
PDEs more efficientfor certain classesof problem

there is a wide range of relevant length scales in the Problem, yet the smallest
length scales are relatively isolated and not volume filling

not known a-priori where the small length scales will develop, or it will be too
difficult/cumbersome to construct a non-uniform mesh to efficiently resolve the
small length scales

computationally too expensive to solve the problem on a single uniform mesh

= AMR allows for solution of such classes of problems by covering the domain
with a mesh hierarchy, where high resolution meshes are only added where
needed to resolve small length scale features

= NOTE: AMR is not a technique to increase the accuracy of a solution; in fact, the
AMR solution can never be more accurate than a unigrid solution with resolution
corresponding to that of the finest AMR mesh

furthermore, AMR generically creates unwanted high-frequency solution
components ("noise”) at refinement boundaries, and though this can be controlled
andhmade small, it is usually quite challenging to get very high accuracy solutions
with AMR

Think of AMR as a tool to getan answer to a computationally challenging problem
in the first place; worry about the 7 digit later
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Outline

= Reminder: why we need AMR, and properties of the
solutions that dictate the particular “flavor” of AMR that
is adequate

= Berger & Oliger style AMR

= ideal for hyperbolic wavelike equations, and certain classes of
problems in GR

= extensions for coupled hyperbolic/elliptic systems

= example: critical phenomena in gravitational collapse

= PAMR/AMRD

] m’fprgstructure for implementing B&0O AMR on clusters (using

Why would AMR be beneficial in GR?

In most astrophysical scenarios where GR is important and numerical
solution is needed, in particular binary compact object mergers an

ravitational collapse, there is a clean hierarchy of a modest range of metric
length scales that need to be resolved

= compact object radius — near field zone (10's of gravitational radii) - far field zone (100s
gravitational radii)

in the strong-field regime small length-scales are isolated (one or two
compact objects) and not volume filling

= however not always the case in GR, e.g. generic cosmological singularities
in the strong-field regimetem | scales are commensurate with spatial

apid tem,)oral variation of the metricis typically confined to
gly small spatial length scales

the equations are non-linear, and in many cases we will not a-prioriknow
where/when refinement will be needed

maximum causal speed of propagation (1 !)

in the weak-field regime gravitational wave propagation is the feature of
interest

= this will be volume fiIIin% and though the temporal scale for variations is always the same,
the spatial scales will ref lect the relevant scales of the source at the time of emission
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Implications for an AMR algorithm Berger and Oliger AMR

= The preceding properties suggest

it ; et ; i simplified and extended) Berger and Oliger AMR, as implemented in
= itis notimportant to have sophisticated grid structures that can efficiently track ” = ; 4

fqﬂtgres&/vﬁh ctomplicated shapes; ratherg simple “aligned box-in-box” type strategies MRD [Pretorius & Choptuik, JCP 218,2006]
will be adequate
- y ; 5 A x = computational domain covered by a hierarchy of independent uniform
it /s however important for the algorithm to provide a mechanism to automatically rectanguiarmeshes, where higher resolution child meshes are aligned
generated the hierarchy as evolution proceeds (i.e. “adaptive™) with and entirely contained within coarser resolution parentmeshes

it /s important to use an algorithm that maintains the same CFL factor everywhere in
the domain; i.e. need time-subcycling

AMR by itself, regardless of how sophisticated the algorithm, will not help in tracking
gravitational wave emission out to large radii with high accuracy ... other technology
will be needed to overcome this if it becomes an issue (though in a binary black hole

merger the shortest GW wavelength ~ 5 gravitational radii ot foo small):

= changing the spatial coordinates to more efficiently represent the wave structure; e.
spherical ﬁolar coordinates, as the angular structure in the wave will not chanﬁe by much
far Ifrorr|| the source, and could efficiently be represented with a relatively small set of
multipoles

changing the slicing to be asympotically null, to “quickly” propagate the waves to large
radii from the source meshhierarchy on e L
e $ s o . ; : memory map of gridsin hierarchy
= Inall then, a simplified version of the original Berger and Oliger AMR algorithm (JCP 53, computational domain
1984) is ideal for our purposes

= though some modifications needed if elliptic equations are solved during evolution = graigeigiimlegsﬂrithm allowed for child meshes to be rotated relative to the

Berger and Oliger AMR Berger and Oliger AMR

= (simplified and extendedz Berger and Oliger AMR, as implemented in = (simplified and extendedz Berger and Oliger AMR, as implemented in
MRD [Pretorius & Choptuik, JCP 218,2006] MRD [Pretorius & Choptuik, JCP 218,2006]

= recursive time stepping algorithm, so refin ts occur in space and = hierarchy construction driven by truncation error (TE) estimates

G2 ) = the B&O proposal to compute this was to periodically make a 2:1

(say) coarsened version of a level in the hierarchy, evolve the two
meshes independently for a short time (typically 1 coarse level time
step), then a /a Richardson, subtract the two solutions to give the
= this ordering is crucialto set boundary conditions for interior equations, TE estimate
in particular the elliptics (though alternative strategies are possible for
purely hyPerboIic systems with explicit time integration, or certain
classes of linear elliptic PDEs driven by conserved sources)

= asingle unigridtime step is taken on a parent level before p; (temporal
refinement ratio) unigridtime steps are taken on the child level

] Iherel, use a “self-shadow” hierarchy to obviate the need to duplicate
evels

ggﬂfjggﬁrﬁéﬁgﬁl?ﬁz t% rt:]eemsp 'fs’gg ’{toego'{\‘,ﬂe&ee”,ﬂ ?gﬂg ofithe = due to the recursive nature of the algorithm, just before the fine-to-

conversely shields the user from AMR implementation details coarse level injection phase, information to compute TE estimates is
naturally available
= after p; steps on the child grid, when the parent and child are in sync again, ; A s »
solution from the child region is /njectedinto the overlapping region of the = to make this work, simply need to “boot-strap” the procedure by
parent level, so that the most accurate solution available at a point is requiring that the coarsest level always be fully refined
propagated to all levels of the hierarchy containing that point
. 5 g = negligible additional cost ... just choose mesh parameters so that the
= gives near-O(N) (optimal) solution of the PDEs first refined level is the desired “coarsest” level




Berger and Oliger AMR

simplified and extendedz Berger and Oliger AMR, as implemented in
MRD [Pretorius & Choptuik, JCP 218,2006]

= algorithm extended to incorporate elliptic PDEs

= for hyperbolic equations, a poorly resolved interior region of a coarse level
will not adversely affect the solution on the parts of the level that are locally
of the finest resolution, as the “junk” from the under-resolved region does
not have more than 1 time step to propagate to the exterior before it is
replaced with finer grid solutions

= the above does nothold for elliptic equations. To deal with elliptics, in a
nutshell, modify the algorithm as follows:

= when descendingthe tree in the recursive time-stepping algorithm,
evolve hyperbolics one step, using an extrapolated solufion of the
variables satisfied by elliptic equations

= getting stable extrapolation is a bit tricky

= when ascendingthe tree, post injection, solve the elliptics over the
entire sub-hierarchy that is in sync with the given coarse level

B&0O AMR Example

Level 1
time step

« evolve hyperbolics
on level 1

+ extrapolate elliptics

on level 1 from past
time levels

PANSVE
Ap=a= 2:1
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B&0O AMR Example

Initial
hierarchy

2 Levels
Pp=4= 2:1

B&0O AMR Example

Level 2
time step

« evolve hyperbolics
on level 2 using
interpolated
boundary conditions

« solve elliptics on
level 2 using
extrapolated
boundary conditions

PANSVE
Ap=a= 2:1




B&0O AMR Example

B&0O AMR Example

Level 2
time step

« evolve hyperbolics
on level 2 using
interpolated
boundary conditions

« solve elliptics on
level 2 using
extrapolated
boundary conditions

NOTE: at this moment
we have all the
information we need to
compute a truncation
error estimate for the
solution at level 2

2 Levels
Pp=4= 2:1

3 Levels
Ap=a= 2:1

B&0O AMR Example

B&0O AMR Example
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Inject from
level 2 to 1

« re-solve elliptics
over the levels 2 & 1

2 Levels
Pp=4= 2:1

Level 1
time step

« evolve hyperbolics
on level 1

+ extrapolate elliptics
on level 1 from past
time levels

3 Levels
Ap=a= 2:1



B&0O AMR Example

B&0O AMR Example

Level 2
time step

« evolve hyperbolics
on level 2 using
interpolated
boundary conditions

« extrapolate elliptics
on level 2 from past
times levels

3 Levels
Ap=a= 2:1

Level 3
time step

« evolve hyperbolics
on level 3 using
interpolated
boundary conditions

« solve elliptics on
level 3 using
extrapolated
boundary conditions

3 Levels
Ap=a= 2:1

B&0O AMR Example

B&0O AMR Example
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Level 3
time step

« evolve hyperbolics
on level 3 using
interpolated
boundary conditions

« solve elliptics on
level 3 using
extrapolated
boundary conditions

3 Levels
Ap=a= 2:1

Inject from
level 3 to 2

« re-solve elliptics
over the levels 3 & 2,
using extrapolated
boundary conditions

3 Levels
Ap=a= 2:1



B&0O AMR Example

Level 2
time step

« evolve hyperbolics
on level 2 using
interpolated
boundary conditions

« extrapolate elliptics

on level 2 from past
times levels

3 Levels
Ap=a= 2:1

B&0O AMR Example

Level 3
time step

« evolve hyperbolics
on level 3 using
interpolated
boundary conditions

« solve elliptics on
level 3 using
extrapolated
boundary conditions

3 Levels
Ap=a= 2:1
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B&0O AMR Example

Inject from
level 2 to 1

3 Levels
Ap=a= 2:1

B&0O AMR Example

Level 3
time step

« evolve hyperbolics
on level 3 using
interpolated
boundary conditions

« solve elliptics on
level 3 using
extrapolated
boundary conditions

3 Levels
Ap=a= 2:1



B&0O AMR Example

Inject from
level 3 to 2
(ol

« re-solve elliptics
over the levels 3, 2
and 1

3 Levels
Pp=p= 2:1

Example: Critical phenomena in
gravitational collapse

Discovered in 1993 by Choptuik, critical }ahenomena refers to interesting
beltlwvnor observed at the #Aresfold of black hole formationin gravitational
collapse

The question Choptuik was trying to answer was, “can one form black holes
of arbitrarily small mass in scalar field collapse?” (yes?)

In the process he discovered behavior that bears striking resemblance to
critical phenomena observed at phase transitions in statistical mechanical
systems:
" ?ower law scaling of order parameters (such as the black hole mass M) near
hreshold

= universality of the threshold solution
= scale invariance of the threshold solution

The exact nature of the black hole threshold depends upon the kind of
matter/energy undergoing collapse, and on the spacetime dimensionality

= whether of relevance in astrophysical settings is unclear ... need a natural fine
tuning mechanism, otherwise occurrence would be exceedingly rare
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Optimistically, what kind of speedup can we expect?

Imagine
d+1 dimensional evolution
the coarsest level has N¢ points
2:1 spatial and temporal refinement ratio

L levels of refinement, with I=1 the coarsest level,
and I=L the finest

tﬁzﬁe})N sttehps Ion tlhle coarsest level; hence will need L d (1) dH AL

) on Ve = . .

on the leve TAMR—CZN N277 <CN™"2
=

linear filling factor of V2 @
— (L-1)
e " Toncrip —C[N2 ]
the total run-time is proportional to the total
number of grid points in space and time (i.e. an
optimal evolution scheme is used), and the
overhead in the AMR algorithm is negligible T
UNIGRID > 2d(L—1)—1
compare to a unigrid run at the resolution of the

finest AMR level AVR

Scalar field critical collapse

= the critical solution (scalar field and spacetime geometry) is spherically
symmetric and scale invariant — specifically it is discretely self-similar

example of a discretely
self similar function f(x,7)
accumulation point
- f(x1) is periodic in time 7
with echoing period A

7is related to the
gr'oper time t measured
y a central observer (at
radius r=0) via

=-In(-t)

xis a dimensionless
variable, related to r and
a

x=rlt
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Scalar field critical collapse Finding the threshold of black hole formation

= In other words:

= Consider a smooth, one parameter (p) family of initial data, where p

= the solution has a periodic component but collapses to small spatial- is, in some sense, related to the energy density of the initial
temporal scales exponentially fast configuration

= each “echo” of the field occurs on a scale 1/30t the previous, and in 1/30t
the time that of the previous echo
initial scalar field profile

= the number of echo’s observed is exponentially sensitive to the initial data ...
at threshold there are infinitely many L
= /deal problem for B&O style AMR, and this was essential for Choptuik’s
discovery

= interestingly, this is also one of the few cases in science where a

qualitatively new aspect of a theory was discovered using purely numerical = Then for p<p*, evolution will lead to dispersal, while for p>p* a
methods black hole will form — p* labels the critical solution for this family

= Ina numerical “experiment”, p* can be found via a bisection search

Scalar field gravitational collapse

Axisymmetric simulations, spherical initial data

The scalar field threshold solution

p<<p" t=0.00 p=>p" t=0.00 . Same near critical solution, transformed to spherical polar
B 3 g coordinates, and using logarithmic radial and time coordinates

=0k

o s a—

: o
0001 ; y . 2, In(r+107)
t=0.00

p~p*
(tunedtowithin
1 partin 10%)

Wbrk done in collaboration
with M. Choptuik,

S. Liebling,and

E. Hirschmann
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W. Hawking firmly belioves that

Properties of scalar field critical collapse
are an anathema and should

= Aisequal to ~ 3.44  laws of classical physics,

= The critical solution is (apparently) universal :7:&1. e Crome
= the same solution is approached at threshold regardless of the initial conditions witationa ts %rmztﬁ“:ﬂﬁmwm d
M [ : - forall the Universe to see, 3
= Near threshold, any length scale arising in the solution satisfies a universal power
law relationship (to leading order’ ffers, and Pr
awager with odds of 100 pounds stir
50 pounds stirling, that when -‘r:; form a{rilny

classical matter or field that is incapable of
becoming singular in flat spacetime is coupled to

eneral relai via the classical Einstein
equations, the result can never be a naked
singularity.

M O(p-p*),p>p*
IR, O(p*-p)™.p<p*=

The loser will reward the winner with clothing to
«cover the winner’s nakedness. The clothing is to
be embroidered with a suitable concessionary

e . TGt 48 s

= yis called the scaling exponent, and is equal to ~ 0.37 & R n P. Prookill &
Stephen W. Hawking. , Kip 8. Thorne
2 Mwﬂumw 1901

In(max(R(p-0.2.1))

= The critical solution is a naked singularity

Testing the universality hypothesis Evolution of plane anti-symmetric initial data

= If the solution is indeed universal, then, regardless of the initial conditions, when

fine-tuned to threshold, the scalar field should exhibit the behavior below at th
centell:| o??:ollapsgsi nolog'arithﬁiac time roy pe polow atthe Initial data that is reflection anti-symmetric about z=0 (a conserved symmetry,)

Surely then, if we choose scalar field initial data that is reflection anti-symmetric

about a plane passing through the origin (z=0), i.e. ®(2)=® (-2), this cannot have . <
the same solution, as then ® (z=0)=0is a conserved symmetry of the equations; i.e. 0.320123
this must “break” the universality p~p*

= Also, recall that since it's the gradients of the field that gravitate, this symmetry does not (tuned ‘_OWi‘hin
prevent scalar field energy from reaching the origin 1 partin 10%)




Evolution of plane anti-symmetric initial data

Last frame from the previous animation, transformed to a logarithmic
radial coordinate centered about the left most echoer

AMR grid hierarchy sample

Last frame from the previous animation

d 25, 2:1 refined levels

(2:1 coarsened in
- figure)

(serial code, took
about 2 days for this
runon a PC ~2001)

p
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AMR grid hierarchy sample

Last frame from the previous animation

25, 2:1 refined levels

(2:1 coarsened in
figure)

(serial code, took
about 2 days for this
runon a PC ~2001)

magnification factor =1

AMR grid hierarchy sample

Last frame from the previous animation

/' 25,2:1 refined levels

A (2:1 coarsened in
figure)

3 (serial code, took

* about 2 days for this
runon a PC ~2001)
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AMR grid hierarchy sample

Last frame from the previous animation

25, 2:1 refined levels

(2:1 coarsened in
figure)

(serial code, took
about 2 days for this
run on a PC ~2001)

p

AMR grid hierarchy sample

Last frame from the previous animation

1 factor = 500,000

25, 2:1 refined levels

(2:1 coarsened in
figure)

(serial code, took
about 2 days for this
run on a PC ~2001)

p
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AMR grid hierarchy sample

Last frame from the previous animation

25, 2:1 refined levels
(2:1 coarsened in
figure)

(serial code, took
about 2 days for this
run on a PC ~2001)

magnification factor = 16,000

PAMR/AMRD

PAMR (parallel adaptive mesh refinement)
manages distributed B&O style grid hierarchies

AMRD (adaptive mesh refinement driver;
implements the just-described version of B&O
AMR, utilizing PAMR for hierarchy management

User codes designed as (in-principle) standalone
uniﬁr id/serial numerical solvers, and supply AMRD

i
with a series of “hook functions” to incorporate
them into the B&O algorithm

Reasons for this separation of functionality

from the point of view of a user wri |n? a code to numerically solve a particular system of PDEs,
AMR and parallel distribution are largely extraneous details

= all the user should be aware of is the possibility that the code cou/d be run in a 4
Egrallel/adaptive environment, meaning grid boundaries could either be at the physical
undaries of the problem, or interior to the domain
= inthe latter case the user leaves the boundaries alone

The AMR driver does not need to know the details of how grids will be distributed in parallel, nor
what equations the user will be solving on those grids

PAMR handles the non-local aspects of parallel grid distribution, and does not care what the
underlying programs will do with the grids
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PAMR AMRD

o Takes care of most parallel grid distribution issues
Built on top of PAMR, hence “parallel ready”
— support for 1,2 and 3D grids, with or without periodic boundaries

support for interwoven AMR/multigrid hierarchies Implements a Berger and Oliger AMR algorithm, modified to support
integrated solution of elliptic equations

simple base application program interface (API)

PAMR_conpose_hi er ar chy() : regrid function Provi_de_s a star_1dard full approximation storage (FAS) adaptive

PAMR_sync() : synchronize data across ghost zones multigrid algorithm

PAMR i nj ect () : fine-to-coarse level injection

R U RS e e it poation User supplies a set of “hook functions” that are called by AMRD to

perform the problem specific numerics

a complete set of data structure management API's, so that it can be
called from fortran programs

current version only supports vertex centered arrays; support for cell- Berger and Colella algorithm for conservative hyrdodynamics in the

gentﬁred )arrays in the works (pretty much done, thanks to Branson works (pretty much done, again thanks to Branson)
tephens

A few final remarks

For the Einstein equations, time taken to evaluate expressions dominates
over other tasks, which helps guide coding priorities

+ 'locality’ of the data less of an issue in load-balancing a parallel code (strategies
designed to guarantee locality, such as space filling curves, may even have a
negative impact on the performance)

* algorithmic tasks ?truncation error estimation, regridding, interpolation, injection,
etc.) are essentially “free”

Solving elliptic equations solved using FAS multigrid is optimal and fast

* at worst a constant factor of 2-3 times slower per equation compared to a typical
hyperbolic equation

for example, 2D axisymetric gravitational collapse code solves 4 (3) hyperbolic
eguations and 3 (4) elliptic equations per time step; ?rofilin indicated roughly
25-45% of the time is spent solving hyperbolics, 50-70% solving elliptics, with
the r?r{!ainder (usually ~ 5-10%) spent on miscellaneous functions in a typical
simulation

Code, including reference manuals and a couple of exametl , can be
downloaded from Matt Choptuik’s web-page (google “Matt Choptuik”, or
see links from my web-page) [example next lecture]
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