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Generalized Harmonic Decomposition

Why more formalism?

= Itis largely through understanding the structure of the field equations,
and not development of new numerical methods, that recent advances
in the field have been made

Except for “tinkering” with the algorithms here and there, the methods used by all
numerical groups have been around for a while: finite difference with AMR, multigrid,
multipatch, pseudo-spectral, domain decomposition, ...

Contemporary computer systems are powerful enough that we do not need to develop
clever techniques to aperoximate the physics of gravity in many situations; we can
solve the full field equations

The difficulty then in a sense is all formalism — controlling constraints, choosing the

jauge, imposing boundary conditions, etc., and in this regard the ADM formalism by
elf is not adequate in all situations

Why not just do generalized harmonic (GH) to begin with?
= certain aspects of GH are a bit obscure, in particular how the
constraints enter, and how to choose the gauge; describing these
things in the language of ADM allows a better intuition about what's
going on

though will not cover it here in detail, BSSN is based on ADM
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Concluding Remarks

Harmonic Coordinates

Harmonic coordinates
a H =
00,x* =

ﬁau(ﬁgnu)zo

does to the Einstein equations what the Lorenz gauge does to Maxwell’s
equations ... the principle part of each component of the Einstein tensor
becomes a wave equation for the corresponding metric element

g"’ga‘mr + 29"1”9‘,)” + 2F‘§,I'}‘f, +87m\2T,; = 9,57 )=0
where
1
r:p = E g&(ga:,p +05q~ gaﬁ,:)

= the character of each field equation is now manifestly hyperbolic, though at the
expense of having used up (essentially) all our coordinate degrees of freedom



Harmonic Coordinates

Harmonic coordinates are in a sense older than the field equations
themselves, as they were used by Einstein as early as 1912 while

searching for a relativistic theory of gravity (then they were called
isothermal coordinates)

over the years they have played an instrumental role in the formal
analysis of the field equations, and the study of gravitational radiation

= study of the characteristic structure of the field equations édeDonder 1921), first

groofs of existence and uniqueness of solutions to the field equations (Choquet-
ruhat 1952), analysis of gravitatlonal waves (Fock 1955), the stability of

Minkowski spacetime (Lindblad & Rodnianski 2004), ...

avoided in numerical relativity because of the largely misguided belief
that they were prone to developing coordinate pathologies in generic
scenarios

= loosely speaking, if the coordinates are “wavelike”, superposition of coordinate
waves could result in large amplitude variations, which could result in the
coordinates ceasing to be linearly independent; e.g.: if the amplitude of waves in
the time coordinate become too large, time could start flowing backwards in the
troughs of the waves

Garglnkle [PRD 65, 044029 (2002)] however noted a possible resolution to this
problem

Generalized Harmonic Evolution

The claim then is that a solution to the coupled Einstein-harmonic
equations

¥ I3 yré _ 5
9" 9ap.5 + 29" @9p5y T 2Tl e +2H 05 ~2Hol g
+871(2T,, = 9,5 T)=0

where £4Ha (no summation) are some (arbitrary) set of evolution

equations for the source functions, plus additional matter evolution

equations, will also be a solution to the Einstein equations provided
the harmonic constraints

Ct=H*-D070,x*
and their first time derivatives are satisfied at the initial time.
“Proof”: one can show that the constraints satisfy the following

equation
0°o,c* =-R4 CH
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Generalized Harmonic Coordinates

Generalized harmonic coordinates [Friedrich, Comm. Math. Phys 110,
525 (1985)] introduce a set of arbitrary source functions H into the
usual definition of harmonic coordinates

= note that any metric in any coordinate system can be viewed as a
generalized harmonic metric

If we now treat the HY as independent functions, we can still write
the f‘ijeld tequations in the desirable wave-like form of harmonic
coordinate

g”’gamd + Zgﬁagp)&y + ZF‘{BF};’, +2H, 5 —2H5Fjp
+871(2T,,, ~ 9,,T) =0

The source functions now encode the coordinate freedom in general
relativity, and to close the system we must specify some additional
equations for the H¢

Generalized Harmonic Evolution

At a first glance this seems a bit like magic ... we've been able to put
the equations into stronqu hyperbolic form, and keep all our
coordinate freedom, by “ignoring” certain relationships that must exist
between variables of the equations

= What we've really done is expanded the system of equations in such a
manner that the expanded system has the desired mathematical properties

= The solutions to the Einstein equations now form a subset of the solutions
to this expanded system, selected through appropriate choice of initial
conditions (this is the case fora//free, Cauchy evolution schemes)

= The important question that still remains, is how does the system evolve
under perturbations; in particular for numerical evolution, under
perturbations sourced by truncation error)?

For PDESs without constraints, unless you're in a regime where the continuum solution
exhibits exponential sensitivity to initial conditions, it would rare for global truncation to
grow faster than linearly at a given resolution, since after each time step, even if truncation
error has changed the evolution, we now have perfectly consistent initial data for the next

If there are constraints, it is not unreasonable to expect that the amount by which the
constraint-violation grows in one time step is proportional to the amount present at the
beginning of the time: this is the recipe for exponential growth

= do the GH form of the EFE admit exponential growth of the constraints?




Constraint damping

It turns out that free evolution of spacetimes containing black holes with “plain” harmonic evolution
doe:hr]o_t gave desirable evolution properties if the numerical data contains small violations of the
constraint

The (apparent) cure, as suggestion by C. Gundlach et al ([C. Gundlach, J. M. Martin-Garcia, G.
Calabrese, 1. Hinder, gr-qc/0504114] based on earlier work by Brodbeck et al [J. Math. Phys. 40, 909
(1999)]) is to modify the Einstein equations in harmonic form as follows:

ap - a _
9”905 +-- +40C, +n,C,-9g,NnC,)]=0
nr):S-aa,,t is a unit timelike vector normal to t=const. hypersurfaces, with proper time measured by an
of

erver moving along n, given by the /apse function a, and « is a constant parameter

= note that any solution to the field equations must have C¥=0, o we are adding “nothing” to them! (i.e., we are
modifying the system of equations, but not the sub-system satisfying the Einstein equations)

= however, if C¥ happens to be non-zero but small, and the spacetime being evolved is a small perturbation of
Minkowski space, Gundiach et al showed that this modification causes all finite wavelength components of Ct to
be exponentially'damped with time

no proof that this damping property extends to more general scenarios, but at least empirical evident that
in works in binary black hole spacetimes

The equations governing the dynamics of the constraints are still homogenous in the constraints, hence the
arguments for obtaining valid solutions with the GH system also apply to the GH system with coistraint damping

0°0,C* = -R“,C” +2«0, [n“C”

Coordinate Issues

The source functions encode the coordinate
degrees of freedom of the spacetime

= how does one specify 4 to achieve a particular
slicing/spatial gauge?

= what class of evolutions equations for /¥ can be used
that will not adversely affect the well-posedness of
the system of equations?
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Constraint
damping
example

An animation of
the evolution of
the constraints in
an axisymmetric
simulation of a
Schwarzschild
black hole using
GH coordinate
with (right) and
without (left)
constraint
damping

(for simplicity the
constraints where
not evaluated next
to refinement
boundaries, hence
the black borders)

Specifying the spacetime coordinates

A way to gain insight into how a given /¢ could affect the coordinates is to
appeal to the ADM decomposition of the spacetime

In terms of the ADM variables, the source functions are

HmM=Hn“=-n“, Ina-K

OH' =H % =Ln4% g+, Ina T
a

0,a=-a’H h+...
08 =a’OH"+...

(r-bar is the spatial connection)



Specifying the spacetime coordinates

Therefore, if you know what kind of coordinates you want in terms
of the lapse and shift, you can design equations for /¢ (H‘) to drive
a (B") to desired values

= For example, I have found it useful when evolving black holes to not
have the lapse function evolve to close to 0; the following equation is
thus designed to drive the lapse to 1

= implemented as a driven wave equation to not adversely affect the
hyperbolicity of the coupled GH-gauge system, and with an added
damping term to help stabilize the gauge

Damped Harmonic Coordinates

Then, the source functions H” in a generalized harmonic formalism are

ox”

H\V = v = [ vo__ —I/]
0,0 =H" =k|n" -n o
Of course, we don't know what the transformation between the coordinates is,
so let’s just choosea form for the barred-normal in code coordinates; e.g. to
“drive” the normal to the form it would have in geodesic coordinates, giving
algebraic conditions on the source functions

o - e

Note: this condition is quite similar to that recently proposed by Lindblom &
Szliagyi [arXiv:0904.4873
form with
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amped” harmonic coordinates

As an another example of gauge, suppose the worries about harmonic gauge
becoming singular during the interaction of large amplitude gauge waves occurred in
some scenario, perhaps it could be avoided by demanding that the coordinates in
stead satisfied a damped wave equation

let unbarred coordinates x” represent the actual (code) coordinates, and assume
there exists a set of “well-behaved” harmonic coordinates

where gradients are with respect to code coordinates, and f ¥ are some set of scalar
functions; i.e. the above define a set of 4 scalar relations

The functions f ¥ are going to represent the wave-like perturbations to well-behaved
coordinates that we want to damp, and so we will require that each f  satisfies a
damped wave equation relative to the timelike normal vector field nv:

where k is a constant

Damped Harmonic Coordinates

Damped harmonic coordinates have so far not been needed in binary
merger spacetimes, though have been of use in high-speed soliton
collision simulations. The following shows the lapse function from
identical sets of initial data; one with harmonic gauge (left), the oth
(left) beginning with harmonic, but then transitioning to damped
harmonic

t=0.0 M t=0.0 M

.5 1.0

With harmonic coordinates when the waves in the lapse collide, the slice
goes singular; with damped harmonic coordinates evolution continues
through this point, and here the collision results in black hole formation
(after that we switch to Harmonic again, as geodesic coordinates are not
good in a black hole spacetime)



Finding consistent initial data

For the metric, the GH equations are second order PDEs, hence for
the IBVP we need to specify the metric and it's first time derivative
at the initial time. How do we do so in @ manner such that ¢*=0and
ac/at=07?

= Many conceivable ways; the following is perhaps the most straight-forward,
?tl mr}g the many years of research gone into solving the ID problem in the ADM
formalism:

1. solve the ID problem in the ADM formalism, giving a,83, h;
9h,,/d¢ at t=0. 4

2. choose H at m the definition (=0 this then gives da/dt
and dp/dt at t=0

3. given 1 & 2, we can construct g, and dg;/at

Example : Binary Black hole merger

Summary of equations solved : Einstein equations in generalized harmonic form with
constraint damping,

0, w = g g -
9.5 +29" 0 9p10y + 2Hap) = 2HoTap + 2T 500 +8712T05 = 9T
a -

+4(n,C, +n,C, ~g,,n°C,)=0

with the following gauge equations

4 = a-1 . = =
0“0, H, ——¢]7+{26”H' m* H,=H,=H,=0
xViIII show a simulation of the merger of two equal-mass initially non-spinning black
oles

At the time solved the equations with 1-step NGS relaxation, thoth used maple to

generate the residuals and Jacobians (would have been too “painful” to do it by hand

in RNPL, in particular with excision)

= highest resolution simulation took ~ 1 month CPU time on 128 nodes of the Lonestar cluster
at UT Austin, in 2006 (took about 2 months wall time, because of 1-day run-time limits they
had in place at the time)

= Justin case you're skeptical that the above “innocent” looking equations couldn’t possibly
have taken so much compute power ...
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Finding consistent initial data

Step 2 on the previous slide directly gives (¥=0; to see that
dC¥/At=0is also satisfied, one can show that the following is a
geometric identity

‘Mu = I:I(uDCv)rlv _%nul:lvcv

M, =(R, - 1g,R-8/T, )0

i.e., S is just the Hamiltonian constraint, and 0.4, are the
momentum constraints.

Thus, step 1 gives .#,=0, and since (=0, all its spatial gradients
will be zero, and then from the above identity we get that dc¥/d¢
must be zero at t=0

the inner loop of the GH 3D code that is evaluated
every iteration of every time step at every grid
point in the domain; ~ 5000 lines of code (4,500
of which are maple 'optimized' fortran).

Fy a0 1015145513 ey 5552
P P e T R e
B e e
s S e Satas
ft i

e Y e
B e e R e

% A3 oy /a4 e5383egxx =
C A e e
e e s i



Sample evolution --- Cook-Pfeiffer
Quasi-circular initial data

=1M

A. Buonanno, G.B. Cook and EP.;
.Rev.D75:124018,2007

This animation shows the /apse
functionin the orbital plane.

The lapse function represents the
relative time dilation between a
hypothetical observer at the
given location on the grid, and
an observer situated very far
from the system -— the redder
the color, the slower local clocks
are running relative to clocks at
infinity

If this were in “real-time” it
would correspond to the merger
of two ~5000 solar mass black
holes

Initial black holes are close to
non-spinning Schwarzschild black
holes; final black hole is a Kerr a
black hole with spin parameter
~0.7, and ~4% of the total initial
rest-mass of the system is
emitted in gravitational waves

What does the merger wave represent?

glcilale the system to two 10 solar mass (~ 2x103! kg)
s

radius of each black hole in the binary is ~ 30km

radius of final black hole is ~ 60km

distance from the final black hole where the wave was

measured ~ 1500km

frequency of the wave ~ 200Hz (early inspiral) - 800Hz

(ring-down) «
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Gravitational waves from the simulation

A depiction of the gravitational
waves emitted in the orbital plane
of the binary. Shown is the real
component of the Newman Penrose
scalar y,, which in the wave zone is
proportional to the second time
derivative of the usual plus-
polarization

-1 +1e03

NOTE: “junk radiation” artifact in initial data not an issue;
“noise” from refinement boundaries apparent at late times

The plus-component of the wave from
the same simulation, measured on the
axis normal to the orbital plane

What does the merger wave represent?

fractional oscillatory “distortion” in space induced by the wave transverse
to the direction of propagation has a maximum amplitude AL/L ~ 3x103

a 2m tall person will get stretched/squeezed by ~ 6 mm as the wave passes
LIGO's arm length would ch: nge by ~ 12m. Wave amplitude decays like
1/distance from source; e.g. at 10Mpc the change in arms ~ 5x10/m (1/20 the

radius of a proton, which is weII within the ballpark of what LIGO is trying to
measure!!)

despite the seemingly smaII amplltude for the wave, the energy it carries
is enormous — around 10%° kg ¢? ~ 104 J ~ 10°* ergs

peak luminosity is about 1/100t the Planck luminosity of 105%rgs/s !!

luminosity of the sun ~ 103ergs/s, a bright supernova or milky-way type galaxy ~
10% ergs/s

if all the energy reaching LIGO from the 10Mpc event could directly be converted
to sound waves, it would have an intensity level of ~ 80dB



Sample Mesh Structure
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Lapse a, z=0 slice

Sample Mesh Structure
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Lapse a, z=0 slice

Sample Mesh Structure
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Lapse a, z=0 slice

Sample Mesh Structure
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Lapse a, z=0 slice

7/26/2009



Sample Mesh Structure

238

0.45 080

Lapse a,z=0 slice, NOTE change of color scale

Compactification

The one possible “problem” with this form of compactification is that the resolution gets very
poor approaching the outer boundary

= outward propagating waves are “blue-shifted” and slow down as they approach the outer boundary

= eventually, for any finite resolution, the waves will become poorly resolved

= with dls;:rauon (which is needed with excision and AMR in any case), at this stage the waves then get
dissipated away, so not a problem unless you want to keep tracking the waves

Note however that the goal of this com?atiﬁcation was not to extract gravitational waves at
infinity, rather, to it was to be able to place the physically correct boundary conditions for
the evolution; thus gravitational waves still need to be extracted at a finite radius (null
compactification could solve these issues)

t=0m

O — ]
-1e-03 1e-0 -1e-03

“Scalar field collapse” binary merger example; left, code coordinates,
right, same data but transformed to barred-coordinates
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Compactification

Mentioned before that it is usually difficult to impose self-consistent boundary conditions.
However, there is one simple solution to the problem : compactification

Since in GR we know from the get-go that we are not going to have to deal with non-trivial
?‘?Iclmgnati in interesting situations, once might as well take the covariance of the theory to
advantage

Compactification here means performing an additional coordinate transformation on the
metric to bring spatial infinity to a finite coordinate location on the computational domain (in
principle could also do this with null infinity).

We know exactly what the boundary conditions are here ... for an asymptotically flat
spacetime, the metric is Minkowski.

In the harmonic code of the previous example, the Cartesian-like coordinate are
independently compactified via

This maps the barred physical coordinates from [-e,0] to the unbarred code coordinates
spanning [-1,1]

Comment about the solution

Ina GR code, the end product of evolution is the metric; the things we often use to describe or
understand the geometry, e.g. black holes, gravitational waves, geodesics, energies, etc. need to
be extracted from the metric.

( I portance, in particular if we are using excision, is the black hole - if a “black hole”
is not a distinct or separate entity in the simulation that we explicitly model, how do we know
where it is, if it's even there, and what then are we excising?

Answer : we search for an apparent horizon—-a marginally outer-trapped 2-sphere

A trapped surface s one in which the
expansion of null wavefronts moving
“away” from the s

everywhere non-positive

The apparent horizon (AH) s the
outer-most trapped surface in a
volume of spacetime that has them,
and on the AH the outward null
expansion is zero

If cosmic censorship holds, an AH will
always be inside the event horizon
(EH) of a black hole; in situations
where both these entities have been
studied, the AH is for most of the
evolution almost exactly coincident
with the EH

One can find the apparent horizon

locally (.. at each time), and this

then guides excision. Properties of

the AH also give valuable' information

about the black hole, e.g. its mass

and spin. Sample AH shapes from BH merger



Concluding remarks

Future of numerical relativity? In my biased and humble
opinion:

= there is much still to uncover about the general relativity using numerical
methods, however, for better or worse, the future of NR as a vibrant,
exciting and funded branch of science is intimately tied to the
gravitational wave astronomy endeavor

In that regard, as of now, the future is bright! LIGO has reached initial
design sensitivity, a arkable feat, and Advanced LIGO is funded. Now
it's up to the universe to be kind, and send some gravitational waves this
way! (an order of EM counter-part on the side would be nice too).

= What role will NR specifically play here?

The “in principle” vacuum problem may be “solved”, at least those aspects
that are amenable to full numerics as of today, namley a modest number of
orbits, non-extreme mass ratios

= though near-extremal mergers, and orbital eccentricity, may still be harboring some
surprises

Concluding remarks

= What role will NR specifically play here?

GW detection is sometimes “sold” as oﬁening up a new window to
the universe, and as history tells, we should thus expect the
unexpected.

This cannot happen off-the-bat with éﬁ\dvanced) LIGO, as, for good

reason, the detector is too biased with predictions of what it is
expected to see

The “best” (most exciting) scenario, again IMHO, would be detections
that are unexplained (excess power detections, in particular if there
are EM counterparts) or signals that don't quite fit expectations (e.g.
separate detections with inspiral and burst templates, though the
best fit parameters don’t match a single binary inspiral and merger)

If such events are detected, then GW source modeling will enter a
very exciting era, as historically the most significant advances in
science have come from a vibrant interplay between theory and new
observational/experimental data

In all then, as a research endeavor, which by definition is uncertain
ﬁn_d rfltc.':ulrishes off unanswered questions, the future couldn’t be
righter!
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Concluding remarks

= What role will NR specifically play here?

Still on the vacuum problem, there is of course much work
that needs to be done to produce useful templates of all the
relevant parameter space for GW detection --- will be a
several year endeavor at least

The frontier for novel and interesting research is to
understand what happens with strong-field GR/matter
interactions [for an excellent introduction to the cutting-edge
computational methods and open questions, see this summer
school]; e.g. binary neutron star mergers, neutron star/BH
mergers, pulsars, accretion disks



