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Grid-based methods for hydrodynamics,

MHD, and radiation hydrodynamics.

(Four lectures)

Jim Stone

Department of Astrophysical Sciences

Princeton University

Outline of lectures

Lecture 1.  Introduction to physics and numerics

Lecture 2.  Operator split (ZEUS-like) methods

Lecture 3.  Godunov (PPM-like) methods

Lecture 4.  Radiation Hydrodynamics
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Lecture 1:

Introduction to physics and numerics.

1. Why fluid dynamics?

2. Equations of MHD.

3. Waves, shocks, & instabilities.

4. Numerical analysis of hyperbolic PDEs.

5. Some basic difference methods. 

The Fluid Universe

Most of the “big” questions in astrophysics

require studying the fluid dynamics of the

visible matter.

• How do galaxies form?

• How do stars form?

• How do planets form?

This requires solving the equations of

radiation magneto-hydrodynamics (MHD).
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It’s a fluid!
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Some of this is a fluid too.
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MHD equations: conservation laws

…for mass, momentum, energy, and magnetic flux.

Mass conservation:
Rate of change of mass in a volume is divergence of fluxes through

surface

 " = mass density

 v = velocity

    = Eulerian derivative (at a fixed point in space)

    = Lagrangian derivative (moving with flow)
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Momentum conservation:

Rate of change of momentum within a volume is divergence of

stress on surface of volume (no viscous stress)

Energy conservation:

Rate of change of total energy density E is equal to the divergence

of energy flux through the surface

E = " v2/2 + e + B2/2 is total energy

P* = P + B2/2 is total pressure (gas + magnetic)

Flux conservation:

Given by Maxwell’s equations:

(constraint rather than evolutionary equation)

From Ohm’s Law, the current and electric field are related by

For a fully conducting plasma, 

So cE = -(v x B).
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The results are the equations of compressible inviscid ideal MHD:

Where E = " v2/2 + e + B2/2 is total energy

P* = P + B2/2 is total pressure (gas + magnetic)

Warning: used units so that µ=1

Plus an equation of state  P = P(",T)
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Can also be written in non-

conservative form

Useful form for numerical methods based on operator splitting

(lecture 2)

Plus an equation of state  P = P(",T)
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Equation of state
Usually adopt the ideal gas law    P=nkT

In thermal equilibrium, each internal degree of freedom has energy (kT/2).

Thus, internal energy density for an ideal gas with m internal degrees of

freedom

 e = nm(kT/2).

Combining,       P = (!-1)e    where ! = (m+2)/m

For monoatomic gas (H), !=5/3  (m=3)

       diatomic gas (H2),     !=7/5  (m=5)

Also common to use isothermal EOS  P = C2"   where C=isothermal sound

speed when (radiative cooling time) << (dynamical time)

In some circumstances, an ideal gas law is not appropriate, and must use more

complex (or tabular) EOS (e.g. for degenerate matter)



Hyperbolic conservation laws.
Hydrodynamic equations:

Can all be written in a compact form (in 1D):

Rewrite as:    a hyperbolic PDE.

If        = constant, then we have a linear, hyperbolic PDE.

There is much analysis on solution of hyperbolic PDEs.

(…actually, MHD equations are not strictly hyperbolic)

where

If P and Vx are constant, it is easy to find time-dependent solutions

to the hydro equations representing advection (entropy wave).

Recall: so         = Vx

Fluid equations become

Which has solution:

At any later time, solution is just initial condition displaced by vxt.

In particular, density field moves with flow without changing shape

(advection).  Even discontinuous solutions for density are allowed,

and just move with flow (contact discontinuties).

Advection (entropy wave)
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Another important characteristic of hyperbolic PDEs is they admit solutions

of the form:

(WAVES)

When a1/a0 << 1; waves are small amplitude; linear

When a1/a0 > 1, waves are large amplitude, nonlinear (in this case, plane

wave solution does not persist, for example nonlinear terms cause

steepening)

Linear waves are produced by small amplitude disturbances, with v < C

(sound waves)

Sound waves

Movie of density

in linear sound

wave

Dispersion relation for hydrodynamic waves.

Substitute solution for plane waves into hydrodynamic equations.

Assume a uniform homogeneous background medium, so

a0=constant, and v0=0.   Keep only linear terms.  Fluid equations

become:

Linear system with constant coefficients!  Solutions require

det(A)=0, which requires

where      is the adiabatic sound speed

Apparently 5 modes; 3 advection modes and 2 sound waves with

Summary of wave modes in hydrodynamics:

1. Entropy waves.  Advect constant density field at V.

2. Sound waves.  Density, velocity, and pressure fluctuations that

propagate at  V+C and V-C.

e.g. advection of sinusoidal density profile

V

Where                     is the Alfven speed

                                is the sound speed

There are three modes (only one in hydrodynamics!):

  Alfven wave propagates at VA

  Slow and fast magnetosonic waves propagating at Cs and Cf

(Of course, the entropy mode is also present in both cases)

Dispersion relation for MHD waves.

Substitute solution for plane waves into MHD equations.  Assume

a uniform homogeneous background medium, so a0=constant, and

v0=0.   Get a much more complicated dispersion relation

(derivation is non-trivial! see Jackson):
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MHD Wave Modes.
1. Alfven Waves

 Zero-frequency when k perpendicular to B (propagate along B),

incompressible.  Represent propagating transverse

perturbations of field.

2. Fast and Slow Magnetosonic Waves

Compressible perturbations of both field and gas.

Fast mode has field and gas compression in phase

Slow mode has field and gas compression out of phase.

Phase velocities of MHD waves: Friedrichs diagrams.

Note for in some cases, modes are degenerate.  Eigenvalues of

linearized MHD equations are not always linearly independent.

MHD equations are not strictly hyperbolic.
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Circularly polarized Alfven waves.

Since Alfven waves

require transverse

velocities, they can be

polarized.

Circularly polarized

waves are the sum of two

linear polarizations with

fixed phase shift.

Even in 1D, MHD requires 2 transverse velocity components in

order to capture all MHD wave modes!

Wave Steepening

So far, we’ve only considered linear solutions.

Most important term we have ignored is the                  term in the

momentum equation.

This term produces wave-steepening.

(Recall solutions to Burger’s equation,                          )

We can estimate for the magnitude of this term (how long does a

linear wave take to steepen into a discontinuity -- a shock?):

while

The two are comparable after N ~ (#/kv1) wave periods

Shocks
Remarkably, hyperbolic PDEs admit discontinuous solutions.

For the equations of MHD, the simplest example is a contact discontinuity:

discontinuous change in density (with constant P) advected at constant v.

However, discontinuous changes in all variables are possible - shocks.

Physically, shocks result from nonlinear steepening of smooth waves, or from

disturbances that propagate faster then the compressive wave speeds in the

fluid.

Mathematically, they are exact nonlinear solutions to the PDEs, and solutions

that represent discontinuous compression (div(v)<0) and decompression

(div(v)>0) are allowed.  The latter (rarefaction shocks) are physically

impossible since they violate entropy conditions.

Shocks are described by jump conditions, the change in conserved variables

across the discontinuity. 24

Shock waves are produced by disturbances with v > C.

In ISM, disturbances are caused by supernovae, stellar outflows
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Shock wave produced

by a supernova

Hydrodynamic shocks
In the frame of reference of the shock, there is a steady fluid flow

toward the shock from the upstream direction, and away from the

shock in the downstream direction.

Mass, momentum and energy must all be conserved in this frame

d u  vu = shock speed

Can solve these equations for the Rankine-Hugoniot jump conditions (ratios

of downstream to upstream quantities).  For example:

M=vu/Cu = shock Mach number
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Given the shock Mach number, and quantities in the upstream gas,

can use the RK relations to compute properties of the downstream

flow.

Some important properties of hydrodynamic shocks:

•  Maximum density jump for M >> 1 is (!+1)/(!-1).

•  Transverse component of velocity is unchanged through shock

•  The downstream flow is always subsonic, vd/Cd < 1.  So sound

waves in downstream medium can reach shock.

MHD shocks
Can derive the MHD shock jump conditions by applying

conservation of mass, momentum, and energy across shock front,

in reference frame moving with shock.  Also require the normal

component of B be continuous, and                     be continuous.

d u  vu = shock speed

Get many more equations, since there are many more variables

in which to specifiy jump.

Tedious to write general jump conditions.  Instead, focus on

special cases.

Alfven “shocks” (rotational discontinuity).
Vx,u = Vx,d (no compression), but transverse components of V and B change

discontunusously (field undergoes discontinuous rotation)

Slow shock
Field “decompresses” through shock, Ms < Cf. Field direction deflected towards normal.

Fast shock
Field compresses through shock.  Field direction deflected away from normal.

Switch-on shock
Upstream transverse component of B=0, downstream non-zero

Switch-off shock
Downstream transverse component of B=0, upstream non-zero

MHD shocks

ud
x

30

Isolated, planar shocks are not that complicated.  However, the

interaction of shocks in multidimensions produces a wide

variety of complex flows.

Triple points: produced by interaction of two shocks.  Since the

postshock conditions (2 and 3) can be different, there must be a

contact discontinuity connected to the point of interaction.

Baroclinic generation of vorticity: Strong shear can be present

across the contact discontinuity produced in shock interactions

(slip surface).  This represents a sheet of vorticity                       .

Generated in shock interactions.  (Vorticity is also produced in

curved shocks.)

Shocks in multidimensions.

1

2 3
S S

CD



Double Mach reflection.
Oblique reflection of a planar shock from a wall.

Movie of density

Triple point

Jet

Linear Instabilities
Going beyond the study of waves and shocks in fluids requires

learning about the zoo of MHD instabilities in fluids.

Probably the most important are:

1. Gravitational instability.

2. Thermal instability.

3. Rayleigh-Taylor (RT) instability.

4. Richtmyer-Meshkov (RM) instability.

5. Kelvin-Helmholtz (KH) instability.

6. Magneto-rotational instability (MRI)

Why talk about them here?  In general, the purpose of numerical

methods is to study the nonlinear evolution of these (and

other) instabilities.  We must be sure our methods capture

them correctly.

See monographs by Chandrasekhar 1965

                                 Drazin & Reid 1981

But what does correctly mean?
The dispersion relation for most MHD instabilities indicates a very

broad (sometimes infinite) range of wavenumbers (wavelengths)

are unstable.

But grid codes can only resolve wavelengths between N&x and L,

where N>2 is an algorithm dependent number.

Correctly means the linear growth rates of all modes between N&x

and L are represented accurately.

Of course, we want to make N as small as possible.  The

truncation error in all grid codes is not Galilean invariant.  So if

you are studying instabilities in which fastest growing modes are

near N, will get different answers in different frames.

But then you would be studying unresolved flow that is dominated

by truncation error.  Would ALSO get different answer with

different resolutions.

One example: Rayleigh-Taylor instability

gravity

Heavy fluid

Light fluid

Classic instability of a heavy fluid accelerated by a light fluid.

Really a buoyancy instability, like convection.

Stability (WKB) analysis is complicated! Only state result:

When growth rate                                                            > 0  INSTABILITY

For "h > "l and B=0, all k are unstable, and highest k have largest growth rate.

Nonlinear evolution of RTI

Computational domain L x L x 2L, 

256 x 256 x 512 grid cells

Uniform vertical acceleration g

Atwood number

Modes unstable parallel to B for % > B2/[("h - "l)g] 

Modes unstable perpendicular to B for all %

Stone & Gardiner, Phys. Fluids 2007;    Stone & Gardiner, ApJ, 2007
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Strong field B = 0.4 Bc (but still very high $);

random perturbations

Isosurface and slices of density

Hydro MHD
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Waves, shocks, and instabilities…

• are all fundamental aspect of fluid dynamics,  and must

be understood to understand applications.

• Will see in future lectures they make excellent code tests.

• Instabilities often lead to turbulence - the study of which

is an important code application
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Numerical Methods.

How do we solve the

equations of MHD on a

computer?

First step is discretization.  We use grid-based methods:

1. Discretize space into (Nx,Ny,Nz) zones:   x ! (xi, yj, zk)

2. Discretize time into discrete levels:   t ! tn

3. Represent dependent variables as either

Point-wise values:

Volume averages:

Difference formulae depend on this choice!

 a=(","v,E)
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Not all numbers on real axis can be represented.

If floating point operations result in a number that cannot be

represented, some sort of rounding must be used.

Round-off error

Rounding is correct if no machine number lies between x and its

rounded value x’.  Difference between x and x’ is the round-off

error.

Can be rigorously proved that the relative error of a rounded value is

bounded by a small, machine dependent number (the machine

precision), that is

Basis for all rigorous error analyses of numerical methods
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Truncation error

Numerical algorithms approximate the true (analytic) solution

using algebraic operations.

Difference between true and approximate (numerical) solution is
truncation error.

TE is not related to the finite precision of numbers on a computer
(round-off error).  Would exist even on a perfect machine with no
round-off error.

TE is under programmers control.  Much of numerical analysis is
trying to reduce it.
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Convergence, consistency, and stability

Consistency: truncation error must decrease as resolution increased.

Convergence: numerical solution should approach analytic solution as grid

spacing &x decreases (numerical resolution increases).

Higher order schemes converge faster, so they are better, right?

Yes, but what matters is the absolute error.  If the error coefficient in a higher

order scheme is large, it may have worse error than a lower order scheme with a

smaller coefficient.

C1h may be better than C2h
2   if   C1 << C2

Also, (1) cost and code complexity put a practical limit on how high one should

extend high-order schemes, (2) all methods are first-order for discontinuities, and

global error may be dominated by shocks and not smooth flow.

Stability: round-off error must remain small and bounded.
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Differentiation: finite-differences

Obvious approximation to a derivative is a difference:

Leading term in truncation error is O(h), so “first-order accurate”

(think of Taylor series expansion).

In addition to truncation error, there will be round-off error in

evaluating derivative, from

• when x >> h, x+h inaccurate

• when evaluating f(x), error is magnified.

 Round-off error of simplest form for derivative is at best sqrt(')
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A significantly more accurate estimate for the derivative comes

from the centered difference formula:

In this case, the leading term dropped in the Taylor series expansion

is O(h2)!  Can lead to order of magnitude decrease in truncation

error.  Can get a “second-order” scheme almost for free.

Using Taylor series, it is also easy to build successively higher-

order approximations for derivative (SMOOTH FUNCTIONS

ONLY), e.g. PENCIL code.

Centered difference
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Centering of differences

 x-h                 x                 x+h             x+2h

Forward difference

Centered difference

x
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Example: error in derivative for

f(x) = x3

Forward difference

Centered difference

Slope of lines is order of method 46

Example: error in derivative for

f(x)=x2
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Higher-order derivatives

It is easy to build up difference representations of higher-order

derivatives, e.g.

Accurate to O(h2) provided h = constant.  Always think how

derivatives are centered:
 x-h                 x                 x+h             x+2h

Centered second difference

x
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Finite differencing
Simplest discretization of the simplest hyperbolic PDE (scalar

linear advection equation) is forward-time centered-space (FTCS):

becomes

Perform von Neumann stability analysis.

For constant coefficients, the analytic solution to the difference

equation must be of the form:

Substitute this form into FDE, find

Note that                  for all &t > 0

Method is unconditionally unstable.
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Lax-Friedrichs
Change time derivative in FTCS to use average of u at tn, get LF:

 von Neumann stability analysis now gives:

This has                   iff

This is the Courant-Levy-Friedrichs (CFL) stability criterion.

Why does LF work and FTCS does not?  Rewrite difference equation:

This is just FD form for the mixed PDE:

LF adds explicit viscosity which makes algorithm stable. 
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Upwind methods
Write spatial derivative using one-sided differences that depend on

sign of velocity

if a > 0

if a < 0

Remarkably, can rewrite upwind FDE in same form as LF:

So upwind method also adds explicit diffusion, with

Define the “CFL number”

which is the ratio of timestep to maximum stable timestep.

For C < 1, upwind methods add less diffusion than LF.
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Lax Wendroff
Can interpret FDE using characteristic tracing.  Solution to linear

advection equation is just initial condition displaced by a&t:

u(x,t0+&t) = u(x-a&t, t0)

 j-1           j           j+1

tn+1

tn

x

t

a&t

&t

(1) Linear interpolation at tn gives

first-order upwind

(2) Quadratic polynomial fit at tn

gives LW

LW finite-difference formulae (compare to upwind and LF):
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Diffusion versus dispersion error
Analytic solution to FDE may approximate a PDE that is different

from the one we are trying to solve (the modified equation).

 e.g. we saw LF FDE actually solves:

Clearly, LF (and first-order upwind) FDE add diffusion error.

Can show that LW adds dispersion error (different k propagate at

different speeds).

Dispersion error can be a serious problem for discontinuous solutions.
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Nonlinear terms.
Consider the simplest nonlinear advection equation:

  (Burger’s equation)

Finite-differencing can give completely wrong solutions.  For example,

consider first-order upwind FDE with initial data:

  u0 = 1  i < 0

          0  i > 0

Use                                        RHS always zero! Solution never evolves!

Instead, need to solve nonlinear term in conservative form:

where flux

That is:

0

1

More about computing f

in future lectures. 54

Summary

• Need to understand some MHD to understand
numerical methods (and applications!)

– Linear waves

– Shocks

– Instabilities

    They are the basis of excellent code tests.

• Discretization is key to grid-based methods

– Finite difference versus finite element versus finite volume

• Nonlinear terms and discontinuities pose special
challenges.


