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MHD, and radiation hydrodynamics.
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Outline of lectures

Lecture 1.  Introduction to physics and numerics

Lecture 2.  Operator split (ZEUS-like) methods

Lecture 3.  Godunov (PPM-like) methods

Lecture 4.  Radiation Hydrodynamics
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Lecture 2:

Operator split (ZEUS-like) methods

1. An operator split algorithm for MHD.
• Transport step

• Source step

• Artificial viscosity

• Constrained transport

2. Tests of the method.

3. Implementation in the ZEUS code.

4. ZEUS versus Athena.

5. Other codes.

6. Introduction to Athena: discretization

Numerical Methods

Last lecture we introduced several different methods for the

linear advection equation:

• FTCS

• LF

• First-order upwind

• Lax-Wendroff

How do we extend these methods to the nonlinear system of

equations that describes MHD?
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e.g. solve the equations of motion in non-conservative form using

operator splitting (e.g. Bowers & Wilson 1991)

1. LHS=0 evolved using higher-order upwind advection scheme

2. Ut = RHS evolved using finite-differencing, U=(!v, e)

Obviously something different must be done to evolve B

Start with a simple method: operator splitting

CD

CD
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Such schemes usually based on a staggered mesh

Scalars located at cell centers.  Components of vectors

located at appropriate cell faces.



Transport step.

Use conservative update of advection terms in “transport step”

In difference form (conservative, finite volume update):

Here, q* is an upwind, interpolated value at

cell edges.  Note v conveniently located at cell

edges as well.

vg is an arbitrary

“grid velocity”

Piecewise linear reconstruction

volume containing upwind

flux for interface j+1/2

volume containing upwind

flux for interface j-1/2
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Piecewise parabolic reconstruction

volume containing upwind

flux for interface j+1/2

Higher-order reconstruction much less diffusive

Profile of square pulse after advection

once around a periodic grid for

different order reconstruction.

1st

3rd
2nd

Convergence rates for smooth profiles.

Source step.
Add remaining terms using finite differencing in “source step”

•  Due to staggered grid, these terms can all be represented using

centered differences (2nd order).

•  Must add an artificial viscous pressure Q to capture shocks.
•  Differencing of Lorentz force is actually quite complex (MoC) 12

Need artificial viscosity to capture shock fronts.  Similar to what

mediates shocks in real gases (viscosity due to particle collisions).

Artificial in the sense it should operate only in shocks, and it is much

bigger than real viscosity.

von Neumann & Richtmyer proposed adding a scalar viscous pressure

of the form

                                         if

              0                         otherwise

Since q is a nonlinear function of             , large only in shocks

Artificial viscosity is not necessary to make algorithm stable.

It is necessary to thermalize kinetic energy in shocks (create entropy).

Artificial viscosity
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Effect of

artificial

viscosity

zero

Too small

Almost right
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Extensions to multidimensions

Traditionally, multidimensional methods are constructed using

dimensional (directional) splitting:

1. Solve Ut = Fx

2. Solve Ut = Gy , with G constructed from result of x-update

3. Solve Ut = Hz , with H constructed from result of y-update

Sometimes these sweeps are symmetrized to make splitting 2nd

order in time (Strang splitting)

This works great for hydrodynamics, and is used for the source and

transport steps in ZEUS

BUT: In MHD, this splitting will not preserve div(B)=0.

Must use directionally unsplit schemes to update the induction

equation, e.g. constrained transport (Evans & Hawley 1988)
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Constrained Transport is a conservative scheme for the magnetic flux.

Difference using a staggered B and EMFs

located at cell edges.

Appropriately upwinded EMFs must

computed from face-centered fields.

Integrate the induction equation over cell face

using Stoke’s Law to give

Keeping  div(B) = 0 with CT
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Boundary conditions
Most grid codes apply boundary conditions by specifying solution in extra rows

of cells (“ghost” or “guard” zones) at boundary of grid.  This algorithm requires

2 or 3 rows (for 2nd or 3rd order upwind reconstruction respectively)

      There are different ways of specifying

solution in ghost zones for different BCs,

e.g.

1. Reflecting

2. Inflow

3. Outflow

4. Periodic

BCs must be applied after every partial update in split methods.
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Flow chart of this algorithm, as

implemented in ZEUS-2D
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Hydro test: Sod shocktube

This test is a “low

bar” to clear.
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Hydro test: double Mach reflection.

2nd order      3rd order

30x120

60x240

120x480

Movie of density
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MHD Riemann problem from Brio & Wu (1988)

ZEUS

FR

FR

CD

SS

CW

Athena
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Magnetic braking test.

Space time diagram of solution.

2nd

3rd

v

v

B

B
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Weber-Davis wind solution.

Rotating, magnetized, pressure-driven spherical wind.

d e

v Bx
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Coronal mass ejection.

Contours of density

and representative

field lines.

time

Toroidal component

of B

Can be compared

to the analytic (!!)

solution of Low

(1984) 24

The many flavours of ZEUS.
• ZEUS05 - first version of ZEUS written by David Clarke from

Mike Norman’s hydro code.

• ZEUS-2D - Stone & Norman (1992).  MHD using CT, covariant
differencing, self-gravity, full transport radiation hydrodynamics.

• ZEUS-3D - David Clarke’s ZEUS05 extended to 3D using CT
(http://www.ap.smu.ca/~dclarke/zeus3d/)

• ZEUS3D - Stone’s extension of ZEUS-2D to 3D
(http://www.astro.princeton.edu/~jstone/zeus.html)

• ZEUS-MP/2 - LCA’s extension of ZEUS-2D to 3D
http://lca.ucsd.edu/portal/software/zeus-mp2

• ZEUS-MP (other versions).  Various other versions are on web
with important bug fixes to ZEUS-MPv1.5, e.g.
http://www.netpurgatory.com/zeusmp.html (this site comes up
first if you Google ‘zeusmp’)



Some properties of the implementations.

• All written in FORTRAN

• ZEUS-2D and ZEUS3D use C precompiler (cpp) to allow

macros that control physics options.  Was necessary because

F77 did not have a precompiler.  But results in non-standard

code (e.g. use of .src instead of .f file extensions).

• ZEUS3D parallelized in OpenMP.

• ZEUS-MP parallelized with MPI using domain decomposition.

But have to swap ghost zones several times per time step in

operator split algorithm.

• (CMMART parallelized with CM Fortran)

Athena vs. ZEUS
ZEUS (written c.1988)

• Operator split algorithm combining upwind and finite-

difference methods

• Still in use (98 citations in 2009)

Athena (written c.2005)

• Fully upwind Godunov scheme

Which code is better?

Well, Athena, of course!

But is ZEUS hopeless for MHD?  Especially since Falle (2002)

pointed out (quite rightly) that the “off-the-shelf” version of

ZEUS-2D failed certain 1-D Riemann problems.

Recently, David Clarke has shown that by adjusting the artificial

viscosity coefficients, and adding a total energy equation in some

cases, ZEUS-3D v3.5 passes all the tests in Falle (2002)

Falle fig. 1

Falle fig. 2

“rarefaction shocks”

fixed by linear

viscosity
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Falle fig. 5

Falle fig. 6

“wrong jump conditions” fixed using total energy option.

See David Clarke’s ZEUS-3D home page for details:

http://www.ap.smu.ca/~dclarke/zeus3d/
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Solve equations of isothermal MHD in periodic box.

Uniform density and B initially.

Add arbitrary velocity fluctuations with the

following properties:

       assumed power spectrum

                      normalization

     no net momentum added

 perturbations incompressible

New realization of driving perturbations every few timesteps.

Comparison of Athena and ZEUS on real applications:

Supersonic MHD turbulence.
Density and magnetic field lines, 5123 grid.

"=1 "=0.01



Convergence with resolution is clearly evident, 323 to 5123

kp=4

"=0.01

Variety of results reported in Lemaster & Stone (2008a; 2008b)

using resolution up to 10243 for (1) energetics, (2) density PDF,

(3) Fourier power spectra, (4) sonic scaling, (5) intermittency.
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2563

1283

Energy in

turbulent

fluctuations

Time

Athena vs. ZEUS

But how does ZEUS perform compared to Athena on real

3D applications?  For example, supersonic MHD turbulence

Saturation energy very similar.
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Start from a vertical field with zero net flux in 2D: B
z
=B

0
sin(2#x)

Sustained turbulence not possible in 2D – dissipation rate

after saturation is sensitive to numerical dissipation: Code Test

Animation of angular velocity fluctuations: $V
y
=V

y
+1.5%

0
x

CTU with 3rd order reconstruction, 2562 grid, "
min

=4000, orbits 2-10

2D MRI in shearing sheet; no-net-flux
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Magnetic Energy Evolution in 2D MRI

with no-net-flux.

Numerical dissipation is ~1.5 times smaller with

CTU & 3rd order reconstruction than ZEUS.
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Is ZEUS still useful in the era of AMR

Godunov (better?) methods?

Advantages of ZEUS
1. Robust.

2. Very fast.

3. Easy to extend self-consistently with additional physics.  (Most

physics extensions to higher-order Godunov schemes destroy the

formal accuracy of the method).

4. Cartesian, cylindrical, and spherical grids.

Disadvantages of ZEUS
1. Finite-differencing for pressure source terms gives poor dispersion

relation for compressive waves.

2. Does not use conservative form (this is easily fixed).

3. No AMR (but in some cases non-uniform grid is better).
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Other algorithms for MHD:

1) Finite-differencing with hyper-viscosity.

e.g. Pencil code

2) Central schemes

e.g. Lax-Wendroff, WENO

3) Finite-volume schemes

e.g. Godunov methods

4) Spectral methods

5) Lattice Boltzmann methods

e.g. Proteus code

6) MHD SPH



Some of these methods are implemented in

public codes.

High-order finite-difference with hyperviscosity

PENCIL

Operator split with artificial viscosity

ZEUS

Nirvana-1

Godunov

Athena

RAMSES

PLUTO

VAC

BATS-R-US

FLASH-3

Central schemes

Nirvana-2

We’ll focus on one: Athena
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Introduction to Athena:

discretization

Takes a completely different approach to solving the MHD

equations from operator split methods like ZEUS.

Use a single-step, finite volume discretization of the

conservative form of the equations.

Many other codes also take this approach.

http://www.astro.princeton.edu/~jstone/athena.html
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Motivation for improved methods

Global model of geometrically thin  (H/R << 1) disk covering 10H

in R, 10H in Z, and 2# in azimuth with resolution of shearing box

(128 grid points/H) will require nested grids.

Nested (and adaptive) grids work best with single-step Eulerian

methods based on the conservative form

Algorithms in ZEUS are 20+ years old - a new code could take

advantage of developments in numerical MHD since then.

Our Choice: higher-order Godunov methods combined with CT
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Why adopt Godunov methods?

1) Very good for shock capturing and discontinuties (contact

waves, slip-surface, current sheet).

2) Can be made strictly conservative, which is necessary for

static and adaptive mesh refinement.

3) Best to conserve total energy to study turbulent dissipation

and heating.

4) Do not require complex and expensive Riemann solvers.

Dai & Woodward 1994; 1998; Zachary, Malagoli & Colella 1994; Ryu, Jones, & Frank

1995; 1998; Balsara 1998; Falle, Komissarov & Joarder 1998; Powell et al. 1999; Balsara

& Spicer 1999; Toth 2002; Dedner et al. 2002; Crockett et al 2003; Pen, Arras & Wong

2003; Londrillo & Del Zanna 2004; Ziegler 2005; Fromang, Hennebelle, & Teyssier 2006;

Mignone et al. 2007
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Athena solve the equations of ideal MHD in conservative form

C&

The first three equations are differenced using a finite-volume

form.  The third equation requires something special: finite-area

form
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Basic Algorithm: Discretization

Bx

By

!

E

V

Scalars and velocity at cell centers

Magnetic field at cell faces

Cell-centered quantities volume-averaged

Face centered quantities area-averaged

Area averaging is the natural discretization for the magnetic field.



Finite Volume Discretization

Conservations laws for mass, momentum and energy can all be

written as

Integrate over the volume of a grid cell, and over a timestep dt,

apply the divergence theorem to give

(This equation is exact -- no approximations have been made!)
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Where, in the previous equations:

 are “volume averaged”  values, while

 are “area averaged” fluxes.
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Finite-Area discretization of the induction equation.

Integrate the induction equation over each cell face, apply Stokes Law

Again, these equations are exact -- no approximation has been made.
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Where, in the induction equation,

 are “area averaged” components of the magnetic field, and

 are “line averaged” electro-motive forces (v x B).
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Uses cell-centered mass, momentum, energy; face-centered field: 

Summary of the discretization.

Uses face-centered fluxes, and edge-centered EMFs.

The key is how to compute these fluxes and EMFs all at once!
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Summary

• A simple, robust, easy-to-understand algorithm for

MHD can be built on operator splitting.

• Various versions of ZEUS code implement this

algorithm.

• In comparison to Athena, ZEUS is somewhat

more dissipative.

• ZEUS is still useful.  But Athena is the future.


