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Grid-based methods for hydrodynamics,

MHD, and radiation hydrodynamics.

(Four lectures)

Jim Stone

Department of Astrophysical Sciences

Princeton University
http://www.astro.princeton.edu/~jstone/downloads/papers/Lecture3.pdf

Outline of lectures

Lecture 1.  Introduction to physics and numerics

Lecture 2.  Operator split (ZEUS-like) methods

Lecture 3.  Godunov (PPM-like) methods

Lecture 4.  Radiation Hydrodynamics
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Lecture 3:

Godunov (PPM-like) methods.

1. The Godunov algorithm

• Riemann solvers 

• Reconstruction

• Unsplit Integrators

2. Implementation issues: the Athena code

3. Tests

4. Comparison of grid and SPH methods.

5. Galilean invariance of grid codes.
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Uses cell-centered mass, momentum, energy; face-centered field: 

Summary of the discretization.

Uses face-centered fluxes, and edge-centered EMFs.

The key is how to compute these fluxes and EMFs all at once!
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Godunov’s orginal (first-order) method

• Difference in cell-averaged values at each grid interface define set of Riemann

problems (evolution of initially discontinuous states).

• Solution of Riemann problems averaged over cell give time-evolution of cell-

averaged values, until waves from one interface crosses the grid and interacts with

the other, that is for

• Due to conservation, don’t actually need to solve Riemann problem exactly.  Just

need to compute state at location of interface to compute fluxes.

Flux given by solution along x=0

Then, solution evolved according to
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For pure hydrodynamics of ideal gases, exact/efficient nonlinear

Riemann solvers are possible.

In MHD, nonlinear Riemann solvers are complex because:

1. There are 3 wave families in MHD – 7 characteristics

2. In some circumstances, 2 of the 3 waves can be degenerate

(e.g. VAlfven = Vslow )

Equations of MHD are not strictly hyperbolic

 (Brio & Wu, Zachary & Colella)

Thus, in practice, MHD Godunov schemes use approximate and/or

linearized Riemann solvers.

Riemann solvers
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Many different approximations are possible:

1.  Roe’s method – keeps all 7 characteristics, but treats each as a

simple wave.

2.  Harten-Lax-van Leer-Einfeldt (HLLE) method – keeps only

largest and smallest characteristics, averages intermediate states

in-between.

3.  HLLC(HLLD) methods – Adds entropy (and Alfven) wave

back into HLLE method, giving two (four) intermediate states.

Good resolution of all waves

Requires characteristic decomposition in conserved variables

Expensive and difficult to add new physics

Fails for strong rarefactions

Very simple and efficient

Guarantees positivity in 1D

Very diffusive for contact discontinuities

Reasonably simple and efficient

Guarantees positivity in 1D

Better resolution of contact discontinuities 8

Exact solution        Roe’s approximate solution           HLLE solution

Effect of various approximations on the solution to the Riemann

problem in hydrodynamics

So which approximation is “best”?  Must explore the use of each.

Use of a Riemann solvers is a benefit, not a weakness, of a Godunov

method: makes shock capturing more accurate.

Higher-order reconstruction
• Using cell-centered values for left- and right-states to define Riemann problems at

cell interfaces is first-order and very diffusive.

• Higher-order methods use piecewise linear (MUSCL) or piecewise-parabolic

(PPM) reconstruction within cells.

• Difference between L/R states is small for smooth flow, large near shocks.

Riemann solver automatically gives correct dissipation for shocks.  No artificial

viscosity is needed.

Piecewise linear reconstruction.

Time advance of L/R-states required.

For second- (or higher-) order single-step methods, the L/R states must be evolved

for !t/2 so that the Riemann solver computes the correct time-averaged fluxes.

Characteristic tracing in the primitive variables can be used for this step

This is essentially a directionally-split time-advance.  In multi-dimensions, source

terms must be added to account for evolution of the longitudinal component of B.

Alternatively, second-order temporal evolution can be achieved by multi-step

methods (e.g. RK integration)

e.g., in 2D source

terms are

(see Gardiner & Stone, JCP, 2005)

 "=eigenvalues

L,R=eigenvectors of linearized system

#wm=monotonized differences
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van Leer unsplit integrator.

• For multidimensional hydrodynamics, directional splitting can be used.

• For MHD, unsplit integrators are necessary if the conservative form is adopted.

• Simplest integrator: modified MUSCL-Hancock (“van Leer”) method due to Falle

(1991).

Steps in algorithm

1. Compute first-order fluxes at every interface

2. Use these fluxes to advance solution for !t/2 (predict step)

3. Compute L/R states using time-advanced state, and compute fluxes

4. Advance solution over full time step (correct step) using new fluxes

Since this is a multi-step method, time-advance of L/R states (characteristic tracing)

is NOT needed in reconstruction step.

This greatly simplifies algorithm, and makes it much easier to extend to multi-

physics, since characteristic decomposition of linearized equations not needed.

Stone & Gardiner, NewA, 2009
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Corner transport upwind (CTU) integrator

A more accurate unsplit integrator is due to Colella (1990),

extended to MHD by Gardiner & Stone (2005; 2008)

Steps in algorithm:

1. Compute L/R states including time advance using characteristic tracing and

source terms for multi-dimensional MHD

2. Compute fluxes from Riemann solver

3. Correct L/R states with transverse flux gradients for !t/2 including source

terms for MHD, e.g. in 2D x-face states corrected via:

4. Compute multi-dimensional fluxes from corrected L/R states

5. Advance solution full time step using multi-dimensional fluxes

see Stone et al, APJS, 2008
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The CT Algorithm in 2D

• Finite Volume / Godunov
algorithm gives E-field at
face centers.

• “CT Algorithm” needs
E-field at grid cell
corners.

• Arithmetic averaging: 2D
plane-parallel flow does
not reduce to equivalent
1D problem

• Algorithms which
reconstruct E-field at
corner are superior
Gardiner & Stone 2005

E z,i 1 2,j 1

E z,i 1 2,j

E z,i , j 1 2
E z,i 1, j 1 2

E z,i 1 2,j 1 2
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Advection of a field loop (2N x N grid)

Field Loop Advection ($ = 106): MUSCL - Hancock integrator

Movies of B2 

    Arithmetic average Gardiner & Stone 2005

(Balsara & Spicer 1999)

Good test of stability of CT algorithm (obviously trivial for vector

potential approaches)

Good test of whether codes preserves div(B) on appropriate stencil:

Run in 3D with non-zero Vz. Does method keep Bz zero?
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Other ways to keep div(B)=0 in Godunov codes

1. Do nothing.  Assume errors remain small and bound.

2. Evolve B using vector potential A, where

3. Remove solenoidal part of B using “flux-cleaning”.  That

is, set                         where

4. Use Powell’s “8-wave solver”

5. Evolve integral form of induction equation so as to

conserve magnetic flux (constrained transport).

Requires taking second difference numerically to compute Lorentz force

Requires solving elliptic PDE every timestep – expensive

May smooth discontinuities in B

Gives wrong jump conditions for some shock problems

Requires staggered grid for B (although see Toth 2000)

You know what happens when you assume.

Replace eigenvalues (wave speeds) in Roe’s linearization with

where

Test with Noh shocktube (M=106 converging flow)

Carbuncle instability

Small perturbations in upstream flow produce large perturbations in postshock gas.

For grid aligned shocks, transverse dissipation is too small to damp perturbations.

Transverse pressure gradient produces flow which amplifies perturbations in

shocks: carbuncle instability

Solution, increase dissipation in transverse direction for grid-aligned shocks, e.g.

using H-correction in Roe solver:

Quirk 1994, Sutherland et al 2003

Carbuncle in regions where

shock aligned with grid

With H-correction,

carbuncle is fixed.

Density at t=2 in Noh shock test

x x

x
x

x
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Boundary conditions
As in ZEUS, BCs are applied by specifying solution in “ghost zones”

Several default choices for BCs provided, e.g.

1. Reflecting

2. Inflow

3. Outflow

4. Periodic

• Unsplit integrator with PPM requires 4 rows of ghost zones.

• BCs applied only once per time step -- more efficient parallelization.

• New user-defined BCs easily added through use of function pointers.

Athena: one implementation of a MHD Godunov scheme.

• Two versions: C (most capable) and F90 (cleanest)

• Modularity: makes extensions to code easier

• Riemann solvers, reconstruction algorithms, unsplit integrators all

separate functions with common interface.

• Ease-of-use:

• configure in C, modules in F90

• flexible variety of output files (that don’t depend on external libraries!)

• Input files have intuitive format enabled by special-purpose parser.

• Portability ensured by:

• Strict adherence to ANSI standards (don’t use language extensions!)

• No reliance on external libraries (except when absolutely necessary, e.g.

parallelization with MPI)

• Performance: unsplit integrators require large number (~100) of 3D scratch

arrays, however method is so expensive (~104 flops per cell) the overall method

is cpu, not memory, bound.

http://www.astro.princeton.edu/~jstone/athena.html  for C version

http://www.astro.virginia.edu/VITA/athena.php  for F90 version



ophir> athena -c

Configuration details:

 Problem:                 linear_wave1d

 Gas properties:          MHD

 Equation of State:       ADIABATIC

 Passive scalars:         0

 Self-gravity:            OFF

 Ohmic resistivity:       OFF

 Viscosity:               OFF

 Thermal conduction:      OFF

 Particles:               OFF

 Coordinate System:       Cartesian

 Special Relativity:      OFF

 Ionizing radiation:      OFF

   Ionizing point sources:  OFF

   Ionizing plane sources:  OFF

 Order of Accuracy:       2 (SECOND_ORDER_CHAR)

 Flux:                    roe

 Unsplit integrator:      ctu

 Precision:               DOUBLE_PREC

 Ghost cell Output:       OFF

 Parallel Modes: MPI:     OFF

 H-correction:            OFF

 FFT:                     OFF

 Shearing Box:            OFF

 FARGO:                   OFF

 All-wave integration:    OFF

Configure provides a very useful way to control physics and algorithm options

before compiling.  Usage:  configure [--with-package=choice] [--enable-feature]

The -c command-line option

enables output of configuration

details from executable:

Parallelization

1. Parallelization with MPI via domain decomposition.
•  Any arbitrary decomposition in X, Y, or Z possible (blocks are best for large Np)

•  Can compute optimum decomposition to minimize data communicated automatically

for given Np

•  No diagonal communication required if data swapped sequentially in each direction.

•  Ideal MPI blocksize seems to be 643 on current processors.

2. Balancing workload is easy since flops/zone fixed.

3. Can overlap work and communication by updating outer zones in

MPI block first.

4. Tried OpenMP on multi-core, and find it does not perform any

better then pure MPI (but saves some memory).

5. FFTs parallelized using block (not just slab) decomposition using

Steve Plimpton’s interface to FFTW.
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Domain decomposition on multi-core

processors to ensure locality

Best to map blocks of MPI domains to cores on processors,

rather than using linear ordering along dimensions.

Equivalent to using Peano-Hilbert ordering for space-filling curve.

27003 grid; 2 x 109 grid cell updates per second
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Weak scaling of Athena is very good, since it is all just explicit

MHD (nearest-neighbor communications).

Bug tracking.

We are now using Trac+SVN to manage software

development, the Trac website will go live soon (for now

access is by permission only).

See https://trac.princeton.edu/Athena

Site contains documentation, milestones, bug tickets, and

ability to browse SVN repository.
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For MHD, must focus on multidimensional tests.

Convergence rate and ability to capture shocks are
equally important.

     Five test problems we have found very useful (all drawn

from basic physics of fluids studied in Lecture 1):

1. Linear wave convergence

2. Nonlinear circularly polarized Alfven waves

3. Brio & Wu, and Ryu-Jones shocktubes

4. Field loop advection

5. MHD instabilities (KH, RT, MRI, etc.)

Some Tests

See http://www.astro.princeton.edu/~jstone/athena.html
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Linear Wave Convergence: 3D (2N x N x N) grid

Initialize pure eigenmode for each wave family

Measure RMS error in U after propagating one wavelength

quantitative test of accuracy of scheme
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Circularly Polarized Alfvén Wave (2N x N grid)

$ ! 0.2, wave amp. = 0.1 (Toth 2000)

Lx = 2Ly, #x = #y, wave propagates at tan-1% = 1/2

Scatter plot showing all grid points - no parametric instability present
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RJ2a Riemann problem rotated to grid

Initial discontinuity inclined to grid at tan-1 ' = 1/2

Magnetic field initialized from vector potential to ensure div(B)=0

 !x = !y,  512 x 256 grid

Final result plotted

along horizontal line

at center of grid

Lx = 2

Ly = 1

UR

UL

Problem is Fig. 2a

from Ryu & Jones

1995
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RJ2a shocktube in 3D (2N x N x N grid)
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HLLD solver, all 7 MHD waves captured well.
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Hydrodynamical Implosion

From Liska & Wendroff; 400 x 400 grid, 

P = 1

& = 1

P = 0.125

& = 0.14

Additional benefit of

using unsplit

integration scheme:

Code maintains

symmetry
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RM instability in Spherical Blast Waves
Impulsive acceleration of a dense fluid by a less-dense fluid (e.g. by a

shock propagating across a CD) is subject to RT-like instability.

Algebraic rather than exponential growth.

P = 0.1

& = 1

LX = 1

LY = 1.5

P = 100 in r < 0.1

B at 45 degrees,

$ = 0.1

HYDRO                           MHD

P = 0.1

& = 1

!x = !y, 400 x 600 grid, periodic boundary conditions
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Hydrodynamic Blast Wave

400 x 600 grid
MHD Blast Wave

400 x 600 grid

Compare to Fig. 23 in Springel (2009)
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Static nested-grids are

ideal to refine

midplane in MHD

studies of thin disks.

Density               Angular momentum 

                  fluctuations

Static mesh refinement.

Uses divergence-free prolongation and restriction operators of Toth

& Roe (2002).  Requires embedding flux-correction algorithm at

fine/coarse boundaries in CTU+CT integrator to preserve (·B = 0.
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Uses same prolongation and restriction operators (Toth & Roe

2002) and flux-correction algorithm at fine/coarse boundaries as

SMR.  Grid generation and destruction handled by in-house

functions (Gardiner).

Results from growth of MHD

RT instability in 2D, single-

mode perturbation.

Five levels of refinement.

Code runs 30 faster than than

equivalent single-mesh

calculation.

Extensions to Athena: AMR
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Another example of AMR in Athena:

 hydrodynamic implosion test of Liska & Wendroff.

Full disclosure: neither SMR nor AMR in Athena is parallelized

(yet).

Fixed grid (left),

AMR with same

effective resolution

(right)

Comparison of grid codes to SPH.

SPH is an extremely useful tool for studying hydrodynamical

flows with gravity (e.g. cosmological structure formation)

Springel & Hernquist (2003)

Achieving the same dynamic range in grid codes is very challenging. 36

But, for studying basic fluid dynamical processes

without gravity, grid codes are often better.

e.g., Sod shock test (run in 3D) with SPH using random particle

positions initially

Rasio & Shapiro 1991
State-of-the-art code (Gadget-2) gives similar

result (image courtesy V. Springel).

N=105, showing all particles
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Results considerably improved by using glass

as initial condition.

3D Sod shock test using

Gadget-2 and glass for initial

particle positions (image

courtesy V. Springel).

But glass is not a good description of how particles will be

distributed in a real application.

N=105, showing all particles
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Grid codes can capture shocks in 3D in less time.

Gadget-2 with 106 particles takes several cpu hours for this test.

Athena with 503 grid takes 1 cpu minute.

Athena, 503 grid, shock run at oblique

angle to grid, showing all grid points.

Gadget-2, 106 particles starting as

glass, solution binned into cells
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Decay of MHD turbulence.
A recent code comparison test of the decay rate of supersonic MHD turbulence

(Kritsuk et al. 2009) shows SPH is very dissipative for this problem.

SPH

ZEUS

PPM

Taken together, these results suggest:

• SPH is best for problems where gravity dominates,

• grid-based codes are more cost-effective for basic fluid dynamic problems

in most (but not necessarily all!) cases.

Figure courtesy of M. Norman

Galilean invariance of grid codes
Recently, Springel (2009) has shown grid codes produce

different results when the calculations are run in different

frames of reference (by adding constant background velocity).

V0/Cs = 0                V0/Cs = 1               V0/Cs =10

&=2, v=Cs/2

 &=1, v=-Cs/2

 &=1, v=-Cs/2

e.g. Kelvin-Helmholtz instability between

different density shear layers

Add long wavelength perturbation Vy=sin(4)x/Lx)
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Why aren’t grid codes Galilean invariant?

Recall 1D x-flux of conserved variables is

So fluxes are not Galilean invariant.

Numerical algorithm approximates fluxes to some order.  Truncation error of this

approximation cannot be Galilean invariant.

By studying slip-surfaces with contact discontinuities and no viscosity or surface

tension, there is no minimum scale in the problem.  Solutions are unresolved

(strongly affected by truncation error at grid scale).

Boosting solution to different velocities by adding constant velocity affects

truncation error, and so changes solution.

Because solution is unresolved, can get same effect just by varying numerical

resolution.
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Changing numerical resolution affects solution

in the same way.

Repeat exactly same test with V0=0 and different numerical

resolutions.  Solutions are vastly different.

Which one is correct?

In other words, which solution should the calculation in the

V0=100Cs frame agree with?

252                             1002                           4002
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Are grid codes Galilean invariant for resolved

solutions?

Study KH instability across a resolved shear layer

in constant density fluid.

Vx = (Cs/2)tanh(y/a)

Add long wavelength perturbation Vy=sin(4)x/Lx)

Boost solution to different frames using constant

V0 = 100 Cs.  This is a tough test!
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Solution for a resolved KH mode

#Vx

Vy
Color scale:

+/- Cs/2 in all images

Images of #Vx = Vx-V0 and Vy at t=4.64 (peak of growth)

Which one is moving, which one is at rest???
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Solution for a resolved KH mode

#Vx

Vy
Color scale:

+/- Cs/2 in all images

V0=100Cs    V0=0

Images of #Vx = Vx-V0 and Vy at t=4.64 (peak of growth)

Solutions are quantitatively identical.

M=100

M=0

Solutions are identical!

Solutions are resolved.

Dynamics of resolved KH instability has been correctly captured

in both frames remarkably well.

Time evolution of KE in transverse component of velocity.

Linear growth rate of

instability captured

correctly in both cases.

However, an initially discontinuous “color” variable

evolved at the same time is diffused in moving frame

t=0

Initially discontinuous

across shear layer

V0 = 0

t = 4.64

V0 = 100Cs

t = 4.64

Truncation error dominates

mixing of C across contact

discontinuity.

Therefore solution for this

variable is not Galilean

invariant

“color” is passive contaminant evolved via

simultaneously with rest of solution. 

32      64    128

However, even with V0 = 0

solution for this variable

changes with resolution,

because it is unresolved.
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Moral of the story (IMHO)
Boosting solution to new reference frame using uniform velocity is

just another way to affect the truncation error.

If you study solutions that are unresolved (dominated by truncation

error), they will not be Galilean invariant.

Resolved solutions, however, are Galilean invariant in modern grid

codes.

The Dirty Little Secret: Much of what is currently studied with grid

codes, especially if it involves contacts, is unresolved.

Corrollary: Eulerian grid codes are not good for studying contact

discontinuities and multiphase media.  Special algorithms are needed

(moving-mesh codes, or interface tracking methods).  This is an

exciting area for future development.



Summary

• Godunov methods for MHD are now mature.

• Godunov methods are an excellent choice for studying basic

fluid dynamical processes like shocks and instabilities.

• They are not good for every application. (Perfect for my

application domain, but maybe not yours. )

• Grid codes are Galilean invariant for resolved solutions that

are not strongly affected by truncation error.


