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Outline of lectures

Lecture 1.  Introduction to physics and numerics

Lecture 2.  Operator split (ZEUS-like) methods

Lecture 3.  Godunov (PPM-like) methods

Lecture 4.  Radiation Hydrodynamics

Lecture 4:

Radiation Hydrodynamics.

1. Additional Physics in grid codes.
• Optically-thin cooling 

• Microscopic diffusion (viscosity, resistivity, conduction)

• Gravity

• Special relativity

2. Radiation hydrodynamics.

3. Numerical methods for radiation hydrodynamics.
• Full transport methods

• Flux-limited diffusion

4. Radiation hydrodynamics in Godunov schemes.

5. Future of grid-based methods.

Adding more physics.

For operator split codes, it is self-consistent to add more physics

using operator splitting:

1. Update advection (“transport”) terms

2. Update source terms

3. Update additional physics terms

For Godunov methods, operator splitting:

1. formally makes scheme first-order in time

2. can lead to stability problems

Nonetheless, operator splitting is still the most commonly used

approach to adding new physics in Godunov methods.

Doing Better: source terms in van Leer

unsplit integrator.

Steps in algorithm

1. Compute first-order fluxes at every interface

2. Use these fluxes to advance solution for !t/2 (predict step), including

new physics source terms

3. Use predicted solution to compute new source terms at tn+1/2

4. Compute L/R states using time-advanced state, and compute fluxes

5. Advance solution over full time step (correct step) using new fluxes,

including new physics source terms computed in step 3

Adding new physics to van Leer unsplit integrator at second-

order is straightforward

Red=changes to algorithm with new physics terms.

Doing Better: source terms in CTU

unsplit integrator

Steps in algorithm:

1. Compute L/R states including time advance using characteristic tracing and

source terms for multi-dimensional MHD, and new physics source terms.

2. Compute fluxes from Riemann solver

3. Compute solution at tn+1/2

4. Correct L/R states with transverse flux gradients for !t/2 including source

terms for MHD, and new physics source terms, e.g. in 2D x-face states

corrected via:

5. Compute multi-dimensional fluxes from corrected L/R states

6. Advance solution full time step using multi-dimensional fluxes, and new

source terms computed solution at tn+1/2 from step 3

Red=changes to algorithm with new physics terms.



Optically-thin cooling
Adds source terms to energy equation:

Where "(T) is per-particle cooling rate, H is per particle heating rate.

Depending on cooling function, terms are usually nonlinear in E, and very stiff.

Forward Euler differencing requires very small !t

Better to use Backward Euler (fully implicit) differencing, where source terms are

calculated at advanced time (using En+1).

Not difficult to add cooling directly to integrator in Godunov methods.

Warning: easy to add cooling, but makes physics of MHD much more complex.

For example, need to add thermal conduction to be able to resolve Field length to

get correct dynamics with cooling instability.

Moral: Don’t add physics just because you can.  It takes work to really

understand what is going on in both the physics and numerics.

Momentum equation:

Energy equation:

Both cases can be differenced using FTCS:

But stability constraint on FTCS for parabolic equations is very

restrictive

Solution: (1) sub-stepping: take many steps at !tD for every MHD !t.

                (2) super-timestepping; size of sub-time steps varied.

                (3) implicit differencing:

Latter leads to large sparse-banded matrices in 2D and 3D, which must

be solved using, e.g. multigrid.

Viscosity and thermal conduction

Anisotropic conduction and resistivity

Anisotropic heat flux (# = conductivity)

Anisotropic viscous

stress tensor

In a magnetized, weakly collisional plasma the thermal

conduction and viscous transport will be mainly along field

lines.  Produces qualitative change in the dynamics

(magneto-thermal instability, heat-flux buoyancy instability,

magneto-viscous instability).

Study through the inclusion of anisotropic viscous and heat

fluxes.

Difference using FTCS with monotonic transverse temperature or velocity gradients

(Parrish & Stone 2005; Sharma & Hammett 2007)

Can represent 1:1000 anisotropies in flux with any orientation of B on grid.

Resistivity
Induction equation becomes:

J = current density

Now over-riding concern is keeping div(B)=0.  This suggests a CT

differencing is required, using an “effective” EMF   E=%J located at

cell corners

Once again, time step constraint very restrictive:

Can use (1) sub-stepping, or (2) super-timestepping.   Implicit CT

differencing is complex.

Can be extended to ambipolar-diffusion and Hall regimes by

appropriate definition of diffusive EMF.

Gravity
With gravity, momentum and energy equations can be written as:

Where g=gravitational accn,                                                 gravitational stress tensor

For fixed gravitational potential (e.g. central star)

• Momentum is not conserved

• Total energy is conserved

So add source term to momentum equations using analytic form for acceleration, and

add source term to total energy using mass fluxes and potential difference -

conserves total energy exactly

For self gravity

Add source terms to momentum as divergence of gravitational stress tensor -

conserves total momentum exactly.  Add source terms to total energy using mass

fluxes and potential difference.

Of course, must also solve Poisson’s equation for the potential: use time average of

$n and $n+1 to ensure second order accuracy without solving PE twice per timestep.

Special relativity
Such a substantial change to algorithm that it can be considered as writing a new

solver rather than extending existing solver.

SR MHD equations can also be written in conservative form

But definition of conserved variables (and their fluxes) is more complicated:

(enthalpy)



So overall integration algorithm remains the same

1. Reconstruction step

2. Compute fluxes with Riemann solver

3. van Leer unsplit integrator

But significant changes required in each step:

1. Conversion from conserved to primitive variables requires

nonlinear root finding, we use method of Noble et al. (2006)

2. Relativistic Riemann solver required (HLL, HLLC, HLLD)

3. Use van Leer unsplit integrator since no characteristic

decomposition needed in reconstruction step.

Relativistic MHD shock test

Mignone et al. 2008

2D tests: relativistic slab jets
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Foundations of Radiation

Hydrodynamics

Numerical MHD is easy compared to radiation hydrodynamics.

Some of the reasons why radiation MHD is hard:

• Which frame (co-moving, mixed-frame, fully relativistic)?

• Proper closure of moment equations.  Variable Eddington factor

is expensive, flux-limited diffusion of questionable accuracy.

• Mathematical problem changes in different regimes: hyperbolic

in streaming limit, mixed hyperbolic-parabolic in diffusion limit.

• Wide range of timescales requires semi-implicit methods.

• Frequency dependent transport.

• Non-LTE effects.

This complexity means that radiation hydrodynamics

means different things to different people.

In some cases, only need to include energy transport via material-

radiation energy exchange term:

Optically thin cooling.

Heating by (ionizing) radiation.

Examples: diffuse ISM, HII regions.

In some cases, may need to include energy transport by diffusion

(in optically thick regions) as well as material-radiation energy

exchange term:

Examples: dense ISM, protostellar disks



In some cases, may “only” need to include momentum exchange

terms.

e.g. line-driven winds (assuming gas is isothermal).

Of course, computing g can be extremely difficult!

In some cases, need to include both energy and momentum exchange

terms.

All of these problems could be called “radiation hydrodynamics”.

Obviously, the numerical methods required in each regime are very

different.

Examples: 

radiation-dominated disks

core-collapse SN

Grid-based method versus particles for

radiation transfer

Even though we use a grid for the MHD, we could still choose to

use either a grid or particles (Monte Carlo) to solve the transfer

equation.

Grid:
More accurate and less noise

Ideally suited for GPUs

Difficult to extend to include scattering, and line-transport

Very expensive

Particles:
Very flexible, easy to extend to frequency-dependent transport, etc.

Embarassingly parallel

Noisy, especially in optically thick regions

Will only discuss grid approach here.

Moment equation approach.
Fundamental description of the radiation is the frequency-

dependent transfer equation

Can be thought of as the “collisionless Boltzmann equation for

photons”, so that I is the “photon distribution function”.

So, just like the fluid equations, can take moments over phase

space (angles) and frequency to derive a set of moment equations.

Why?  Reduces dimensions of problem, making it easier to solve.

Radiation Hydrodynamics in ZEUS-2D

• Solve comoving moment equations to O(1) in (v/c)

• Use variable Eddington tensor                 to close hierarchy.

• Compute f from formal solution using short characteristics

    (Mihalas, Auer, & Mihalas 1978, Kunasz & Auer 1988).

Stone & Mihalas 1992, Stone, Mihalas, & Norman 1992

Solve with an operator-split approach.

Use implicit solution of moment equations in “source step”

Use conservative update of advection terms in “transport step”



Centering of variables.

Uses a staggered grid, with scalars at cell-centers, vectors at faces,

and off-diagonal tensor components at corners.

Implicit differencing.
Material-radiation interaction and radiation transport terms have a

very restrictive time step limit, and must be solved implicitly.

Write schematically as

 '=1 is backward Euler (fully implicit)

 '=1/2 is Crank-Nicholson

Equations are nonlinear in unknowns, so must use Newton-

Raphson iteration to solve.  Requires solving large sparse-banded

matrix for every NR iteration.

Linear solvers

Matrix solved for each NR iteration is very sparse, so use iterative

methods like GMRES or ICCG.

Formal solution to compute Eddington factor

restricted to cylindrical coordinates.

Have to solve the transfer equation along rays

 to compute the Eddington tensor

Short characteristics (Kunasz & Auer 1988): solve along ray

segments that cross a single zone, and interpolate I to start of next

ray segment, O(N2) in 2D

Long characteristics: for each cell, solve along rays that cross entire

grid, O(N3) in 2D.

Short characteristics are much faster, but more diffusive.

Short versus long characteristics Module tested extensively.

Dynamic diffusion test: advection

of Gaussian pulse of radiation.

Contours of I in searchlight beam test of formal

solution.

16x16 64x64
E F

But the module was never used for a published application!



Radiation Hydrodynamics in 3D with ZEUS

Studying accretion disk turbulence requires 3D.  In 1998, formal

solution via short characteristics in 3D was not feasible.

Solution:

Close moment

equations using flux-

limited diffusion.

Turner & Stone 2001

Solve with an operator-split approach.

Use implicit solution of moment equations in “source step”

Use conservative update of advection terms in “transport step”

No flux equation with FLD.

Implicit methods in 3D
Matrix to be solved in each NR step is much bigger in 3D.

Equivalent to

entire matrix in

2D problem

Test: damping of linear waves.

 (/) = 0.001  (/) = 1  (/) = 1000

Prad/Pgas=0.1

Test: subcritical shock

Parameters same as in Sincell, Gehmeyr & Mihalas (1999)

X = Minerbo limiter

    = Levermore &     

Pomraning limiter

This module was used for local radiation MHD

models of the inner regions of accretion disks.

Motivation:

1. What is the saturation amplitude of the MRI in a

radiation-dominated plasma?

2. Need to include radiation to balance heating for truly

steady-state disk models ! spectra.



Linear growth rates of the MRI are changed by radiative

diffusion (Blaes & Socrates 2001)

(Turner, Stone, &

Sano 2002)

Density on faces of

computational volume
Initial

Prad/Pgas = 100

Vertically stratified radiation dominated disks
• Grid is 2H x 4H x 24H (32x64x384)
• Prad/Pgas = 10, initial Prad/Pmag= 25, zero-net-flux

Hirose, Krolik, & Stone 2005
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Extending Athena to radiation MHD:  mixed-frame to O(v/c)

Mihalas & Klein 1982, Lowrie & Morel 1999; 2001

(with Mike Sekora at Princeton)

Algorithmic Steps – Hybrid Godunov

1.  Backward Euler HLLE (implicitly advances

radiation quantities – 1st order).  Equations

solved in this step are linear.

2. Modified Godunov Predictor (couple source

effects to hyperbolic structure – 2nd order)

3. Modified Radiation Riemann Solver (HLLE,

LF, LW, etc.)

4. Modified Godunov Corrector (semi-implicitly

advances material quantities – 2nd order)

This algorithm works in all asymptotic limits…

Streaming-limit

( << 1

Pulse propagates at c

Static diffusion limit

v/c << )/l

Gaussian pulse diffuses

Dynamic diffusion limit

v/c ~ )/l

Gaussian pulse advected

with fluid



Marshak waves
Time evolution Numerical convergence

 t = 2.5

 t = 7.5

 t = 25

 t = 75

 t = 250

= Er

= T

Points are semi-analytic solution of Su & Olson (1996).

Sub-critical shock
Profiles at three different times.

Super-critical shock

Profiles at three different times.

Parameter values as in Ensman (1994), Turner & Stone

(2001), Hayes & Norman (2003)

Convergence rate of linear waves.

Will test whether our splitting of an implicit solution of the

radiation moment equations from modified Godunov solution

of the material equations is 2nd order in all (any?) limits.

(testing underway)

Overall summary of 4 lectures.
What we covered:

Basic MHD processes

Operator split methods (like ZEUS)

Godunov methods (like Athena)

Extension with more physics

Radiation Hydrodynamics (a whole new regime for codes)

What we left out:

Other schemes (central schemes, WENO, spectral methods,…)

Other codes (Pencil, RAMSES, HARM, Cosmos++, …)

Applications! (90% of my papers are applications)

Future of Athena

1. Cylindrical Grid (developed by A. Skinner UMd)

2. Special Relativistic MHD (being tested)

3. Dust Particles (being tested)

4. Parallelized AMR (Dec. 2009) 

5. Full Transport radiation MHD (??)

Watch the Athena web pages for more information.  New version

with SMR should be released within the year (by 1/1/2010).  New

Trac site will be made open to public this year.



Future of grid-based methods.

Some things are easy to predict:

• More physics

• Better methods

• Better resolution on bigger machines

But the real future is with YOU, the students

of this program.

Thank you for your attention and feedback.


