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Problem 1.4

We need to evaluate the wavefunction for the Euclideanised action:

SEuclidean =
R2
AdS

16πGN

[−
∫

Σ4

√
−g(R + 6)− 2

∫
∂Σ4

K]

where, K = 1
2
hab∂nhab. The metric is given to be: ds2 = dρ2 + sinh2 ρ dΩ2

3.
For this metric, R = −12. We also find K.

K =
1

2
Tr

[(
1 0
0 1

sinh2 ρΩ3

)(
0 0
0 2 sinh ρ cosh ρΩ3

)]
= 3 coth ρ

Now the Σ4 integral gives:∫
Σ4

√
|g| = V ol(S3)

∫ ρc

0

dρ sinh3 ρ

=
V ol(S3)

8

∫ ρc

0

dρ(eρ − e−ρ)3

=
−V ol(S3)

12
+ lim

ρc→+∞

V ol(S3)

8

(e3ρc

3
− 3eρc

)
The ∂Σ4 integral gives: ∫

∂Σ4

K = lim
ρc→+∞

V ol(S3) coth ρc

(since the boundary is at ρ = +∞) ∴ We can now write down the on-shell action as:

SEuclidean =
R2
AdS

16πGN

[
−V ol(S3)

2
+ lim

ρc→+∞

3V ol(S3)

4

(e3ρc

3
− 3eρc

)
− 6 lim

ρc→+∞
V ol(S3) coth ρc

]
Thus the wave-function:

ψ = e−SEuclidean

= exp
( R2

AdS

32πGN

V ol(S3)
)

Problem 2.3

We compute the equal time 2-point function of a massless scalar in a fixed de Sitter background,〈
BD|φ(~x, η)φ(~x′, η)|BD

〉
. (1)

Fourier transforming (1) we have,〈
BD|φ(~x, η)φ(~x′, η)|BD

〉
=

∫
d3k

(2π)3

d3k′

(2π)3
ei
~k·~xei

~k′·~x′
〈
BD|φ(~k, η)φ(~k′, η)|BD

〉
. (2)
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Here we can write

φ(~k, η) = fk(η)a† + f ∗k (η)a where fk(η) =
1

k3/2
(1− ikη)eikη . (3)

The Bunch-Davis vacuum is annihilated by a,

[a, a†] = 1, a|BD〉 = 0, 〈BD|BD〉 = 1 . (4)

Using (4) we have the 2-point function in momentum space as〈
BD|φ(~k, η)φ(~k′, η)|BD

〉
= f ∗k (η)fk′(η)

=
1

(kk′)3/2
(1 + ikη)(1− ik′η)e−i(k−k

′)η (5)

We can also impose the momentum conservation condition, then〈
BD|φ(~x, η)φ(~x′, η)|BD

〉
=

∫
d3k

(2π)3

d3k′

(2π)3

(1 + ikη)(1− ik′η)

(kk′)3/2
e−i(k−k

′)ηei
~k·~x+i~k′·~x′(2π)3δ(~k + ~k′)

=

∫
d3k

(2π)3

(1 + k2η2)

k3
ei
~k·(~x−~x′)

=
1

2π2∆x

∫ ∞
0

dk
(1 + k2η2)

k2
sin(k∆x) , ∆x = |~x− ~x′|, k = |~k| (6)

=
1

2π2∆x

{
∆x(1− γ)− lim

ε→0
ln(∆xε) +

η2

∆x

}
. (7)

Here γ is the Euler - Mascheroni constant. So the finite part of the 2-point function is,〈
BD|φ(~x, η)φ(~x′, η)|BD

〉
=

1

2π2

{
1− γ +

η2

(∆x)2

}
. (8)

The physical origin of the IR divergence is quite subtle. The correct argument why there is an
IR divergence comes from the fact that we sum over all states inside and outside the cosmolog-
ical horizon. Let us denote P =

p
eHt

as the physical momentum. The cosmological horizon is

at P = H, inside the horizon P > H, the number of degrees of freedom is constant and there is
no problem. However, outside the horizon for P < H, number of degrees of freedom grows with

time which is the reason of IR divergence. Therefore, we should write < φ(x)φ(x′) >≈
∫ Λ

H
dP
P

where H is now our IR cutoff while Λ is the UV cutoff.

Problem 3.4

The rate equation is:-
∆Pa(n) = −ΣbγbaPa(n) + ΣbγabPb(n)
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where, {a} are the available vacuua, and γba is the decay rate per unit volume from vacuua ‘a’
to vacuua ‘b’.
To make the transfer matrix symmetric we rescale the rate variables in the following fashion:

γab = Mab exp (Sa)

where, Sa is the entropy of vacuua ‘a’, and M is a symmetric matrix. Thus now, our transfer
matrix looks like:

T =

 (−M21e
S2 −M31e

S3 ...) M12e
S1 ....

M21e
S2 (−M12e

S1 −M32e
S3 ...) ...

... ... ....


or,

T =

 (−M21e
(S2−S1) −M31e

(S3−S1)...) M12 ....
M21 (−M12e

(S1−S2) −M32e
(S3−S2)...) ...

... ... ....

×exp (S1 + S2 + S3 + ...)

Thus we have a symmetric matrix. Now looking at the matrix:

T =

 (−M21e
S2 −M31e

S3 ...) M12e
S1 ....

M21e
S2 (−M12e

S1 −M32e
S3 ...) ...

... ... ....


it is easy to see that we can decrease the rank by one by adding up the rows. Hence the
determinant of T is zero. This implies we have a zero eigenvalue. Now the characteristic
polynomial of an n × n square matrix is

∑n
j=0(−1)jajλ

j where an = 1, an−1 = Tr A, a0 =

Det A and general aj is the sum over j-rowed diagonal minors. These minors are all (−1)j ∗Cj
where Cj is some positive number (and C0 = 0). Therefore, the characteristic polynomial
equation is

∑n
j=0 Cjλ

j = 0. Because all Cj are positive, therefore λ must be negative such that
we get zero on RHS.
Now we want to find the zero eigenvector of the matrix:

T =

 (−M21e
S2 −M31e

S3 ...) M12e
S1 ....

M21e
S2 (−M12e

S1 −M32e
S3 ...) ...

... ... ....


We can write:

(T )αβ =
∑
γ

(−Mγαe
(Sγ−Sα))δαβ +Mαβ
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We need to satisfy: ∑
β (T1)αβPβ = 0

or,
∑

β,γ (−Mγαe
(Sγ−Sα))δαβPβ +

∑
β

MαβPβ = 0

or,
∑

γ (−Mγαe
(Sγ−Sα))Pα +

∑
β

MαβPβ = 0

or,
∑

β [−Mαβ(e(Sβ−Sα)Pα − Pβ)] = 0

(9)

or,
Pβ
Pα

=
exp (Sβ)

exp (Sα)

Thus the zero eigenvector is:
Pa = exp (Sa) (10)

Problem 4.1

a) We consider a model of inflation based on a potential V (φ) = µ4−pλφp in the regime φ > MP

with 0 < p ≤ 2. First note the following equations:

H2 = 8πGρ ρ =
φ̇2

2
+ V (φ) ≈ V (φ) . (11)

From these equations we can approximate H2 as follows:

H2 ≈ 8πGV (φ) =
1

M2
P

µ4−pλφp ≡ 1

M2
P

κφp (12)

Also from the equation of motion with the slow-roll condition (φ̈ ≈ 0) we can approximate φ̇:

φ̈+ 3Hφ̇ = −∂V
∂φ

= −pκφp−1 ⇒ φ̇ ≈ − pκ
3H

φp−1 (13)

From these equations we have the ratio,

H

φ̇
= − 3

pM2
P

φ (14)

Now let us consider the Ne e-folding during inflation:

Ne =

∫
da

a
=

∫
Hdt =

∫
H

φ̇
dφ =

∫ φf

φi

[
− 3

pM2
P

φ

]
dφ

= − 3

2pM2
P

[φ2
f − φ2

i ] ≈ −
1

pM2
P

φ∆φ . (15)
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Now in φ > MP (so that MP < φ < φ+ ∆φ ) we can determine ∆φ:

Ne = − 1

pM2
P

φ∆φ ≥ − 1

pM2
P

MP∆φ ⇒ ∆φ ≤ −NepMP = −60pMP (16)

Now from the scalar power spectrum

< ξξ >∼ (
H2

φ̇
)2 ∼ 10−10 (17)

we can determine the parameter µ:

10−5 ∼ H2

φ̇
= −3H3

pκ
φ1−p = −3

√
κ

p

φp/2+1

M3
P

≥ 3
√
κ

pM
2−p/2
P

(18)

⇒ κ = µ4−pλ ≤ 10−11pM4−p
P (19)

b) Given the action

S =

∫
d4x
√
−g
[
(∂φ)2 + µ4−pλφp

]
(20)

The quantum corrections are of order ( κ
M

(4−p)
Pl

)power. Therefore, the corrections are small as

we expect. Now, the slow-roll conditions M2
Pl
V ′′

V
M2

Pl

φ2 . To check that this is small we have to

consider φ >> MPl and to show that quantum corrections are small. However, the contribu-

tions to the potentially dangerous operators like e.g.
φ6

MPl
that are huge for φ >> MPl must

have a factor ( κ
M

(4−p)
Pl

)power and since this is very small as κ→ 0, the system is stable.

c) In the UV completion we would have to solve the eta problem, ie. the higher order terms
in the Lagrangian that are suppressed by 1

MPl
can not be ignored because they can still give

the O(1) contribution. E.g. the gravitational wave problem, where we need to sum the infinite
series of corrections where all terms are important because ∆φ > MPl. Thus one wants to find
some additional symmetry that protects us from writing higher order terms.

Problme 5.4

Parameter dependence of the cosmological model
The equations we have are, the Friedmann equation

H2 =
8πGa2

3
ρtot , (21)

and the energy-momentum conservation

φ = −4πGa2

k2

(
ρ+ 3

ȧ

a

f

k

)
, φ̇ = − ȧ

a
φ+

4πGa2f

k
(22)
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Here the equations are in conformal time. And the equations for perturbations in fluids (as-
suming the tight coupling for simplicity) are

δ̇b = −kvb + 3φ̇ , v̇b = − ȧ
a
vb + kφ (23)

δ̇c = −kvc + 3φ̇ , v̇c = − ȧ
a
vc + kφ (24)

Here the tight coupling condition is

δb =
3

4
δγ , vb = vγ (25)

Now, we want to know which parameter are involved to evolve these equations. First we need
initial conditions and the initial conditions depend on A and ns from inflation. To get H = ȧ

a

in the above equations, we use ρb+ρc+ρν +ργ which shows the dependence on Ωbh
2,Ωch

2, and
h. We also see that these parameters later enter the equations for perturbations (δ̇i, v̇i). Since
ΩΛ and Ωb are much smaller than Ωc and before recombination, we are mostly in radiation-
dominated era, ΩΛ and Ωb can be ignored approximately.

Effect of changing distance to the last scattering surface
The effective oscillatory equation we get for linear perturbations from reheating up to

recombination have the form (combining equations for δ̇ and v̇):

δ̈k + 2
ȧ

a
δ̇k +

(
k2

3
− 4πGρtot

)
δk = 0 . (26)

This equation has an answer of the form:

δk = A sin(cskτ) . (27)

This means that different modes oscilate with the speed of sound, cs up to the last scattering.
Changing the distance to the last scattering means that we change the time as which these
modes can oscilate. Therefore the extremums of sin(cskτ) happen at different k (or l). This
causes the peaks in the power spectrum to shift to right or left.

sin(cskτ) = 0 → cskτatLS = nπ → k =
nπ

csτatLS
(28)

Degeneracy between the parameters
Different parameters can produce similar effects on perturbations at the last scattering as

follows: One example is that h can change the distance to the last scattering surface and
therefore shift the peaks to left and right. But Ωb determines the photon/baryon ratio and
therefore the sound speed in plasma so that

cskτatLS = nπ (29)

is dependent on both cs and τatLS. Since Ωm,Ωb,Ωc, it is also degenerated with h. Another
example is that changing ΩΛ but keeping ΩΛ + Ωc fixed together with Ωb fixed would change
h, but we can fix ΩΛ + Ωb and change Ωc to get the same effect.
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Problem 6.1

Given;

S =

∫ √
−gd4x{F ′(A)(R− A) + F (A)}

Varying auxiliary field A :-

δS

δA
=

∫ √
−gd4x{F ′′(A)(R− A)− F ′(A) + F ′(A)}

Thus we obtain: R = A. Plugging this into the action we have:

S =

∫ √
−gd4xF (R)

Now we do a conformal transformation:

gµν → gµν exp (σ)

Therefore,
√
−g →

√
−g exp (2σ) and R→ exp (−σ){R− 3

2
gµν∂µσ∂νσ+ total derivative }

Demanding conformal invariance of the action gives:-

S =

∫ √
−gd4x exp (2σ)

(
F ′(A){e−σ(R− 3

2
gµν∂µσ∂νσ)− A}+ F (A)

)
We want to write this as:

S =

∫ √
−gd4x

(
R− 3

2
gµν∂µσ∂νσ − V (σ)

)
So we have the following equation,

eσF ′(A) = 1

∴ eσ = − logF ′(A)

And also V (σ) = e2σF ′(A)A− e2σF (A) = A
F ′(A)

− F (A)
(F ′(A))2

.(proved)
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Problem 6.1

We need to find the graviton propagator in D dimensions. We know that the polarization
tensor has to be a (D−2)×(D−2) dimensional traceless transverse symmetric matrix. Which

means that there are
D(D − 3)

2 number of degrees of freedom. Now looking at the polarization
sum tensor (to which the propagator has to be proportional to) we can see that the following
structure works well when the indices µ, ν, α, β run from 1 to D − 2, that is the transverse
directions only.

Nµναβ = −c ηµνηαβ + ηµαηνβ + ηµβηαν

We fix the coefficient c to be equal to 2
D − 2 by demanding the tracelessness condition. By

construction the propagator is symmetric. Now we have to make it Lorentz invariant, i.e, we
should be able to write it for the indices running over all the spacetime directions. Thus we
have to add a non-Lorentz invariant part which should cancel the contributions coming when
the indices take values 0 or D − 1. The tensor we have at our disposal other than ηµν is the
momentum vector kµ. Thus we can write it as a bilinear of the form kαk̄β where we define our
vetors in the following fashion:

kµ =


E
0
.
.
0
E


and,

k̄µ =


−E
0
.
.
0
E


We add these bilinears in the required symmetric fashion. Therefore now with the indices
running over all values from 0 to D − 1 our propagator looks like:

Nµναβ = − 2
D − 2 ηµνηαβ + ηµαηνβ + ηµβηαν + 1

2k · k̄ [a1 k(µk̄ν)ηαβ + a2 k(αk̄β)ηµν

+a3 k(µk̄α)ηνβ + ...+ a6 k(ν k̄β)ηµα]

The coefficients a1, a2...., a6 are now fixed by demanding cancellation of the extra previously
absent piece coming from the first three terms. In particular we need to look at the following
µ ν α β Needed cancellation

0 0 0 0 2
D − 2 − 2

0 0 i i −2
D − 2

........
D − 1 i i D − 1 1
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The table thus can be constructed from the extra pieces, and thus coefficients can be obtained
consistently. Finally we end up with the following expression for the propagator:

Nµναβ = − 2
D − 2 ηµνηαβ + ηµαηνβ + ηµβηαν + 1

2k · k̄ [ −2
D − 2(k(µk̄ν)ηαβ + k(αk̄β)ηµν)

+ k(µk̄α)ηνβ + k(µk̄β)ηνα + k(ν k̄α)ηµβ + k(ν k̄β)ηµα].


