
Maldacena, problem 5

We wish to compute the classical action of unperturbed dS4 with an S3 boundary at τ = τc
and the Hartle-Hawking analytic continuation, as a saddle-point approximation for the path
integral. The metric is

ds2 = −dτ 2 + cosh2 τdΩ2
3. (1)

The action separates into three parts: the Hartle-Hawking continuation, the dS action, and
the boundary. First we consider the boundary piece, SB. The action is just

SB =
R2
dS

8πGN

∫
∂dS4

K =
R2
dS

8πGN

cosh3 τc

∫
S3

K(τc), (2)

where K = 1
2
hij∂τhij is the (dimensionless) extrinsic curvature of the boundary, h is the

metric of the boundary, and RdS is the characteristic radius of the de Sitter space. K is
constant on the boundary and equal to

1

2

∂τ cosh2 τ

cosh2 τ
δijδij =

3

2

sinh(2τc)

cosh2 τc
. (3)

The integral over S3 is then just the volume of S3, which is 2π2; thus, the boundary action
is

SB =
R2
dS

16πGN

6π2 sinh(2τc) cosh τc. (4)

Next we compute the de Sitter action SdS, between τ = 0 and τ = τc. Again pulling out
dimensionful constants, we have

SdS =
R2
dS

16πGN

∫
dS4

√
−g(R− 6), (5)

where 3R2
dS is the cosmological constant in four dimensions. de Sitter has constant positive

curvature, so (R − 6) factors out of the integral; in particular, R = 12 in four dimensions
with R2

dS factored out. Plugging in the determinant of the metric,

SdS =
R2
dS

16πGN

6

∫ τc

0

dτ

∫
dΩ2

3 cosh3 τ

=
R2
dS

16πGN

36π2 sinh τc cosh2 τc. (6)

Lastly we look at the Hartle-Hawking continuation. We analytically continue τ onto the
imaginary axis: τE = iτ running from π

2
to 0. This gives the Euclidean metric

ds2
E = dτ 2

E + cos2 τEdΩ2
3, (7)

which is the metric of a 4-sphere. The range 0 ≤ τE ≤ π
2

gives a hemispherical “cap” to the
bottom of the spacetime, functioning as a boundary in the past. S4, like de Sitter, is also a
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space of constant positive curvature R = 12, so the action is

SHH =
R2
dS

16πGN

6

∫ 0

π
2

d(−iτE) cos3 τE

∫
dΩ2

3

=
R2
dS

16πGN

(6i)

∫
dΩ2

4

2
=

R2
dS

16πGN

(8π2i). (8)

Thus the total action is

S =
R2
dS

16πGN

π2(8i+ 36 sinh τc cosh2 τc + 6 sinh(2τc) cosh τc) (9)

The wavefunction of the spacetime goes as eiS. The latter two terms of the action
give oscillating phase as τc increases, but the first term—the one from the Hartle-Hawking
continuation—produces an exponential decay with no dependence on the cutoff:

Ψ ∼ exp

[
−R

2
dSπ

2GN

]
. (10)

That is, the probability of finding this empty de Sitter universe is proportional to |Ψ|2 ∼
exp[−R2

dSπ/GN ], and R2
dSπ/GN = Γ has the appearance of a tunneling rate. Interestingly,

the cutoff-independent behavior of Ψ above is precisely equal to that of Z in problem 1.4,
with the AdS radius replaced by the dS radius.

It should be noted that we could just as easily have defined τE = −iτ , or equivalently inte-
grated it from −π

2
to 0. That would have introduced a minus sign on the cutoff-independent

part of the action, and thus taken the exponential behavior of Ψ to be growing rather than
decaying. These correspond to two different ways to attach the cap, or two different bound-
ary conditions for the action. Superpositions of these two Ψs solve the Wheeler-de Witt
equation, since each of them does separately.

Creminelli, problem 2

We are given:

〈ζ~k1ζ~k2 . . . ζ~kn〉 = (2π)3δ

(∑
i

~ki

)
F (ki) (11)

ζ(~x, t) appears in an exponential in the line element:

ds2 = −dt2 + e2ζ(~x,t)a2(t)δijdx
idxj (12)

and hence must be dimensionless. Define the dilation symmetry {xi, η} → λ{xi, η}, ki → ki/λ.
Then from the Fourier transform:

ζ~k =

∫
d3x ζ(~x, t)ei

~k·~x (13)

we see that ζ~k transforms as ζ~k → λ3ζ~k. Analogously, δ
(∑

i
~ki

)
→ λ3δ

(∑
i
~ki

)
.

Therefore 〈ζ~k1ζ~k2 . . . ζ~kn〉 scales as λ3n, and F (ki) must scale as λ3n−3 for the scalings of
both sides of eqn.(11) to balance. This can only be achieved if F (ki) has the dependence
k−3n+3.
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Susskind, problem 5

We have three vacua which we call 0, 1, and 2. 0 is terminal. After some small ∆t the
probability that I find myself in one vacuum or another is given by 1 γ10 γ20

0 1− γ10 − γ12 γ21

0 γ12 1− γ21 − γ20

×
 P0(t)

P1(t)
P2(t)

 =

 P0(t+ ∆t)
P1(t+ ∆t)
P2(t+ ∆t)

 (14)

where γ12 = tunneling rate/voltime ·∆t from 1 → 2 and Pi(0) is the probability of finding
oneself in that particular vacuum.

We can rearrange into a differential equation: 0 Γ10 Γ20

0 0− Γ10 − Γ12 Γ21

0 Γ12 0− Γ21 − Γ20

×
 P0(t)

P1(t)
P2(t)

 =

 Ṗ0(t)

Ṗ1(t)

Ṗ2(t)

 (15)

where Γ12 = tunneling rate/voltime from 1→ 2. This is the transition matrix.
The eigenvalues of this matrix are give by the solutions to

λ [(λ+ Γ10 + Γ12)(λ+ Γ21 + Γ20)− Γ12Γ21] = 0. (16)

λ = 0 is a solution (the transition matrix has a zero eigenvalue). By inspection we see that
the associated (normalized) eigenvector is simply sitting in the terminal vacuum, that is: 1

0
0


Writing Γ10 + Γ12 = a > 0 and Γ21 + Γ20 = b > 0 and solving for the other eigenvalues

we have

λ =
−(a+ b)±

√
(a+ b)2 − 4ab+ 4Γ12Γ21

2
(17)

the solutions are real as discriminant can be written as

(a− b)2 + 4Γ12Γ21 = 4Γ2’s− 2(4ΓΓ perms) + 2(2ΓΓ perms) + 4Γ12Γ21 (18)

= 4Γ2’s + 2Γ12Γ21 − 2(3ΓΓ perms) + 2(2ΓΓ perms) (19)

≤ (a+ b)2 (20)

as we assume that all Γ’s are > 0. Therefore, the square root of the discriminant < a + B
and we see that the other two eigenvalues are negative.

We can write our equations in terms of our linearly independent eigenvectors. Some
initial state is given by

α |λ0〉+ β |λ1〉+ γ |λ2〉 (21)

where the 1st and 2nd eigenvectors contain the 1 and 2 vacua in addition to part of the
terminal vacua (generically).

3



Solving the transition equation we have that

|state(t)〉 = α |λ0〉+ βe−|λ1| |λ1〉+ γe−|λ2| |λ2〉 (22)

we can see immediately that the probability of finding oneself in the 1 or 2 vacua decays
exponentially. In other words, an observer following these transitions finds themselves more
and more likely to be in the terminal vacuum.

However, if we examine a single time step we see that the number of these 1 and 2
vacua grow with time provided the decay rates are smaller that the expansion. Use the
percolation/lattice model.

Say we have some number, A, of lattice sites occupied by the 1 vacuum, while B occupy
2. We will deal with the tunneling and then deal with the growth. Doing things in this order
is most conservative. After one time step the number goes to

tunneling → A(1− γ12 − γ10) +B(γ21) (23)

growth → g [A(1− γ12 − γ10) +B(γ21)] (24)

≥ A(1− γ12 − γ10) (25)

therefore, if g · (1 − γ12 − γ10) > 1 is a sufficient condition for the number of lattice sites
occupied by vacuum 1 to grow every time step. That is, the number of 1 vacua (the same
argument of course applies to the 2 vacua) to grow with time.

Silverstein, problem 1

a) If we want to have our CMB observed today, it is required about 60 e-folding during
inflation. Given the potential µ4−pλφp, the e-foldings

Ne =

∫
Hdt =

∫
H

dφ

φ̇
=

∫
3H2

−V ′
dφ =

∫
V

−V ′
= −

∫ φf

φi

φ

p
dφ =

1

2p

(
φ2
i − φ2

f

)
(26)

Because φ > Mp and φf is derived from that the slow roll parameter is order one, then we
can conclude that φ2

f � φ2
i . Restoring the Mp,

Ne =
φ2
i

2pM2
p

(27)

And there is another constraint from COBE

〈ζζ〉 =
1

k3

H4

2φ̇2
=

1

k3

H2

2
(
V ′

V

)2 =
1

k3

λµ4−pφp+2

6p2
∼ 1

k3
COBE ∼ 1

k3
10−10 (28)

According to the above two equation (26) and (28), we obtain the conditions on µ,

µ =

(
6× 10−10 × p2

λ (2pNe)
p+2
2

) 1
4−p

(29)
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Figure 1: µ(p)

b) We set λ = 1 to check the scale µ as a function of p which is shown in fig. 1. µ which is
much smaller than Mp or Hubble scale will have radiative corrections from loop effect. The
easy way to think about is the case p = 2, which corresponds to the mass term of inflaton.
The loop effect (with some other large mass particles coupling to inflaton) will make the
mass the order of the new physics. Assuming the potential is not the complete theory, there
is another nonrenormalizable terms. For example, 6 dimension term

L = −φ6µ−2 (30)

If µ � Mp and φ > Mp, then these terms will dominate, and there is η problem. However,
if there is (approximate) shift symmetry in the theory, there is no other terms correcting
the potential in quantum level, then it is stable. The potential is not fine-tuned as it is
technically natural, ie. a new symmetry is obtained when λ→ 0.

c) 1) Need to ensure moduli remain stabilized throughout inflation, as they can disrupt
the potential if they start to roll. 2) The potential can also be destabilized if the inflaton rolls
too far, eg. ∆φ

MP
∼ 10 3) New degrees of freedom might appear as the inflaton moves down

a warped throat. The gravitational redshifting can cause fields that are normally heavy in
the rest of the compactification to become light there. 4) A general string compactification
involves multiple backreaction effects which are important.
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Zaldarriaga, Q5 - Solution from Group 5

WMAP best-fit spectrum:
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WMAP 7-yr best-fit parameters with data

Explanation for the effects of cosmological parameters on the CMB TT power spectrum:

Ωbh
2

• Increasing Ωbh
2 causes greater disparity between the heights of odd and even peaks. Eg, note that

the Ωbh
2 = 0.03 curve is highest in the first peak but lowest in the second. This can be understood by

analogy with a driven SHO, for which the equation of motion is:

ẍ+
k

m
x =

F0

m
(1)

where F0 is a forcing constant. The general solution (having applied boundary conditions to eliminate
a sine solution) is:

x = Acos(ωt) +
F0

mω2
(2)

Increasing the baryon density makes the photon-baryon fluid heavier, which decreases its frequency of
oscillation. Using eq.(2), the offset of the motion from zero then increases. Modes are not oscillating
about their mean, but some positive value. When oscillations are squared to form the power spectrum,
this leads to alternating heights between the odd and even peaks. Conversely, lower Ωbh

2 → higher

1



500 1000 1500 2000

�

−1000

0

1000

2000

3000

4000

5000

6000

7000
�(
�
+
1
)C

�
/
2
π

[µ
K

2
]

Varying Ωbh
2

0.01

0.018

0.02258

0.0275

0.03

Figure 1: The effects of varying Ωbh
2. Ωbh

2 = 0.02258 is the WMAP best-fit value.

ω → less offset → less disparity in peak heights.

• An alternative way of explaining the same idea: the odd peaks correspond to overdensities lining up
with gravitational wells at recombination, whilst even peaks correspond to underdensities—remember
both contribute equally to a power spectrum. Increasing Ωbh

2 deepens potential wells, increasing over-
densities. It is harder for photons to climb out of these deep wells, so the magnitude of underdensities
is reduced.

• Peak spacing—this increases for increasing baryon density. From eq.(2) above, peaks occur at
t = nπ/ω. t corresponds to the interval between the time a mode enters the horizon and recombi-
nation, which decreases for smaller k (or equivalently l). Small k are larger modes, which enter later.
So the spacing of peaks in t corresponds to a spacing in k between modes which have reached max-
ima/minima of their oscillations at the time of last scattering. Increase Ωbh

2 → decrease ω → increase
spacing between peaks.

• The damping tail begins in at higher l-values for larger baryon densities. The mean free path of a
photon during recombination is very approximately given by

λ ≈ 1√
neσTH

(3)

During the ionized era ne ∝ Ωbh
2. So for larger baryon densities the photon mean free path is shorter,
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and hence the characteristic scale on which perturbations get washed out is smaller. This means the
damping is less pronounced—effectively it kicks in at higher l-values.

Ωmh
2
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Figure 2: The effects of varying Ωmh
2. Ωmh

2 = 0.13348 is the WMAP best-fit value.

• Changing Ωmh
2 changes the heights of the peaks through an early ISW effect. Potentials decay during

the radiation era but are constant during the matter era (as can be seen from the time-dependence
of the Poisson equation). If Ωmh

2 is low, matter-radiation equality occurs closer to recombination.
The decay of potentials from the radiation era then has to be taken into account at recombination (of
course recombination is still happening in the matter era, but the transition from radiation to matter
domination isn’t instantaneous, so it takes a while for the potentials to stabilize).

The ISW contribution to the power spectrum is proportional to
(

Φ̇ + Ψ̇
)2

, so changing potentials

give a boost in power over static potentials. Hence peak amplitudes increase as Ωmh
2 decreases.

• Increasing Ωmh
2 shifts the location of the first peak to lower l-values. Because we’re keeping ΩΛ fixed,

Ωm is fixed and hence we must be increasing H. If we consider the age of the universe to be given by
H−1 (to first order!) this corresponds to a younger universe. The surface of last scattering would then
be closer to us, so peaks subtend a larger angle and hence occur at lower l.
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Figure 3: The effects of varying ΩΛ. ΩΛ = 0.734 is the WMAP best-fit value. NB: WMAP value is
shown in a different colour to previous plots.

• ΩΛ effects the large-angle CMB through the late-time ISW effect. The dependence is exactly the
same as given above, except now the cause of the potential decay is the late-time acceleration of the
Λ-dominated era. Formally the contribution is integrated over all times since last scattering, but the
integral is dominated by recent times. Recent effects correspond to large angles on the sky, hence low
l-values are affected.

• The peak positions also shift to smaller l if ΩΛ is larger. This is due to a change in conformal time
intervals in a Λ-dominated universe. To explain: if Ωbh

2 is held fixed, then the sound horizon at last
scattering is fixed. The angle this fixed physical scale occupies on the sky is roughly:

θ∗ =
fixed scale

radial distance
≈ k−1

∗
η0 − ηrec

(4)

Consider a short conformal time interval:

dη =
dt

a
=

da

a2H
=

da

a2
√

1
3M2

P
ρM + Λ

3

(5)

In a universe with Λ 6= 0 the interval dη is shorter than in one with Λ = 0. Therefore the denominator
of eq.(4) is smaller and the peaks shift to larger angular scales → lower l-values.
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Error Estimates

We will continue to consider varying one parameter at a time - not ideal for a degenerate set of param-
eters!

For the Ωbh
2 graph, the error bars around the first peak look to be roughly ±100. The WMAP

(red) curve sits roughly in the middle of the Ωbh
2 = 0.018, 0.0275 curves, which have a difference of

about 600 in height around the first peak. So we can estimate the error on Ωbh
2 to be approximately

100/600× (0.0275− 0.018) ≈ 0.016. This is about 3 times larger than the real WMAP error bars of
∼ ±0.0006. (After all, we are just eyeballing it...)

Applying a similar approach to the Ωmh
2 graph (again looking around the first peak), I estimate

100/1800× (0.17− 0.1) ≈ 0.004. This is a better match to the WMAP quoted errors of ±0.0055.
The error on ΩΛ is somewhat harder to estimate, as varying Λ doesn’t cause a change in peak heights.

Looking at the RHS of the first peak, it’s clear that ΩΛ = 0.6, 0.8 are ruled out. I would say that the gap
between the WMAP and ΩΛ = 0.6 curves would need to be about one third it’s size to achieve consistency
with the error bars. Hence a very rough estimate of the error would be 1/3× (0.734−0.6) ≈ 0.045. The
WMAP value is ±0.029, so we’re not too far off.
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