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1 Problems for dS/CFT (Maldacena)

Problem 2

Recall that a scalar field in de Sitter space can be written as φk = a†f + af ∗,
where f = (2k3)−1/2(1 + i|k|η)e−i|k|η is a classical solution at a fixed Fourier mode
corresponding to the Bunch-Davies vacuum.

As we checked in Problem 1, the momentum-space propagator is

〈φk(η)φk′(η
′)〉 = (2π)3δ3(k + k′)fk(η)f ∗k′(η

′). (1)

To compute the three-point function in the interacting vacuum |Ω〉, we use the
in-in formalism to compute in terms of the free-field Bunch-Davies vacuum |0〉,

〈
Ω|φ3(η)|Ω

〉
=
〈

0|T̄ ei
∫ η
−∞HI(η

′)dη′φ3(η)Te−i
∫ η
−∞HI(η

′)dη′ |0
〉
, (2)

where HI(η
′) = λ

3!
φ(η′)3.

Expanding the exponentials to first order this is〈
φ3(η)

〉
= − i

3!

∫ η

−∞
dη′
〈
0|
[
φ3(η), HI(η

′)
]
|0
〉
. (3)

We can evaluate this simply using Wick’s theorem, as described in Appendix
A of Weinberg’s paper, hep-th/0506236. For the first order term we connect three
external legs at a vertex, and have both a “right" and “left" vertex from the time-
ordered and anti-time-ordered products. By the Feynman rules each of these terms
gives a product of three propagators. There are six possible permutations, giving
an overall factor of 6 that cancels the 3!. The final result in momentum space is

〈φk1(η)φk2(η)φk3(η)〉 = (2π)3δ3(k1 + k2 + k3)× (4)[
iλ

∫ η

−∞−iε

dη′

η′4
fk1(η)f ∗k1(η

′)fk2(η)f ∗k2(η
′)fk3(η)f ∗k3(η

′) + c.c.

]
,

(5)
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where we have made the contour slightly imaginary to pick out the appropriate
vacuum. We can evaluate this integral by redefining η′ → η′ + iεη′. The following
term can be found using Mathematica,∫ η

−∞
dη′

1

η′(1 + iε)
e−ikη

′(1+iε) = i [iΓ(ikη) + log(−η)] . (6)

The other terms with higher powers of η′ in the denominator can be evaluated
integrating by parts and again applying this integral. The final answer has compli-
cated k dependence, and we will not write the full expression here, but it contains
a logarithm and divergent powers up through 1/η3.

Note that we also could have obtained 4 by brute force, by operating the raising
and lowering operators inside φ on the vaccum. It is straightforward but tedious to
check that this gives the same answer.

2 Exercises on Inflation (Creminelli)

Problem 5

The dynamics of the goldstone boson, like axion with decay constant f , is governed
by the following action

S =

∫
d4x
√
−g
(

(∂µπ)2 +
(∂µπ)4

f 4

)
. (7)

On the de Sitter background ds2 = 1/(Hη)(−dη2 + dx2) it reads as

S =

∫
d4x

1

H2η2

(
(∂µπ)2 +H2η2

(∂µπ)4

f 4

)
, (8)

where indices are contracted by the flat metric. The deviation from gaussianity can
be estimated as

L4

L2

∼ H2η2
(∂µπ)2

f 4
∼ H4

f 4
. (9)

If we take H > f the Goldstone boson ceases to be a weekly coupled degree of
freedom and UV completion is required. In case of axion at high energies the Pec-
ceiï£¡Quinn U(1) symmetry is restored and the theory is described by the heavy
complex scalar field with mass ∼ H (thermal).

3 Problems for Aspects of Eternal Inflation (Susskind)

Problem 2

We start with the de Sitter space in global slicing

ds2 = −dt2 +
cosh2χ

H2
(dχ2 + sin2χdΩ2). (10)
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It is obvious that in order to get the angular part of the interval to be given by r2dΩ
one needs to make the following change of space coordinates

(Hr)2 = sin2χ cosh2(Ht). (11)

Moreover, the absence of the off-diagonal metric components, namely g0r, and the
time independence of the remaining components requires (11) to be suplmented by
the following transformation of the time-like coordinate

tanh2(Hτ) =
tanh2Ht

cos2χ
. (12)

As a result of (11) and (12), the interval from (10) takes the following form

ds2 = −(1−H2r2)dτ 2 +
dr2

1−H2r2
+ r2dΩ2. (13)

4 Mechanisms for Inflation (Silverstein)

Problem 3 (the solution follows quite closely hep-th/0404084)

The equations of motion for the homogeneous field in DBI inflation is given by

φ̈− 6

φ
φ̇2 +

4φ3

λ
+

3H

γ2
φ̇+

V ′

γ3
= 0, (14)

where γ is given by

γ ≡ 1√
1 + λ

φ4
φ̇2
. (15)

The interesting to us limit corresponds to the γ � 1, since in other case the
model reduces to the theory of the scalar field with ordinary kinetic term and the
effective potential V + φ4/λ. Notice that in this limit the last two terms of (14) are
subdominant.

The Friedmann equation reads as follows

H2 =
8πG

3
(φ4γ/λ− V ). (16)

By taking the time derivative of this equation and taking into account (14) we arrive
at

φ̇ = − 1

4πG

H ′

γ
⇒ γ2 = 1− (4πG)−2

λ

φ4
H ′2. (17)

In order to have an inflation the potential energy should dominate over the
kinetic energy (it easy to make sure that in this regime the the equation of state is
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almost the same as for the cosmological constant). Thus the Friedmann equation
given above reduces to

H2 =
8πG

3
(−V ). (18)

Differentiating this equation we find that the condition of the domination of potential
energy gives (in Plank units)

√
λ(−V )3/2

φ2V ′
� 1. (19)

While the γ � 1 condition reduces to

λV ′2

−V φ4
� 1, (20)

In contrary to the usual slow-roll conditions. It must be pointed out that the terms
in the expansion of the action in perturbations are enhanced by factors of γ, which
will lead to the strong non-Gaussianity.
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