PiTP problem set, week 1

Group 8
July 25, 2011

1 Problems for dS/CFT (Maldacena)

Problem 2

Recall that a scalar field in de Sitter space can be written as ¢, = alf + af*,
where f = (2k%)"Y2(1 + i|k|n)e "I is a classical solution at a fixed Fourier mode
corresponding to the Bunch-Davies vacuum.

As we checked in Problem 1, the momentum-space propagator is

(Sr(mow () = 2m)*6° (k + k') fr(n) fi (). (1)

To compute the three-point function in the interacting vacuum |{2), we use the
in-in formalism to compute in terms of the free-field Bunch-Davies vacuum |0),

<Q|¢3(77)|Q> — <O|T€iffoo Hz(n’)dn’¢3(,7)T€fifi’oo Hf(n’)dn’|0> : (2)

where H; (1) = %qﬁ(n’)?’.
Expanding the exponentials to first order this is

(@)=~ [ o 01 [0 Hr0)] 0). ®)

We can evaluate this simply using Wick’s theorem, as described in Appendix
A of Weinberg’s paper, hep-th/0506236. For the first order term we connect three
external legs at a vertex, and have both a “right" and “left" vertex from the time-
ordered and anti-time-ordered products. By the Feynman rules each of these terms
gives a product of three propagators. There are six possible permutations, giving
an overall factor of 6 that cancels the 3!. The final result in momentum space is

(Dry (1) Py (1) Py (1)) = (27)%6° (1 + Ky + kig) X (4)
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where we have made the contour slightly imaginary to pick out the appropriate
vacuum. We can evaluate this integral by redefining n’ — 1’ + ien/. The following
term can be found using Mathematica,

" 1 S lie) ey
/ dn,me_an () — § [iD'(ikn) + log(—n)] . (6)

The other terms with higher powers of 1’ in the denominator can be evaluated
integrating by parts and again applying this integral. The final answer has compli-
cated k dependence, and we will not write the full expression here, but it contains
a logarithm and divergent powers up through 1/7n3.

Note that we also could have obtained 4 by brute force, by operating the raising
and lowering operators inside ¢ on the vaccum. It is straightforward but tedious to
check that this gives the same answer.

2 Exercises on Inflation (Creminelli)

Problem 5

The dynamics of the goldstone boson, like axion with decay constant f, is governed
by the following action

5= / /=g ((a,ﬂr)? + (a““>4) | (7)

Iz
On the de Sitter background ds®> = 1/(Hn)(—dn? + dz?) it reads as
1 (0,m)*
S = d4$H27)2 ((6M7r)2 + H2n2#) , (8)

where indices are contracted by the flat metric. The deviation from gaussianity can
be estimated as

L 0
Lo I I

If we take H > f the Goldstone boson ceases to be a weekly coupled degree of

freedom and UV completion is required. In case of axion at high energies the Pec-

ceii£jQuinn U(1) symmetry is restored and the theory is described by the heavy

complex scalar field with mass ~ H (thermal).

3 Problems for Aspects of Eternal Inflation (Susskind)

Problem 2
We start with the de Sitter space in global slicing
h2
ds® = —dt* + CO;[—QX(CZXQ + sin?ydQ?). (10)
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It is obvious that in order to get the angular part of the interval to be given by r2dQ
one needs to make the following change of space coordinates

(Hr)? = sin®x cosh?(Ht). (11)

Moreover, the absence of the off-diagonal metric components, namely go,, and the
time independence of the remaining components requires (11) to be suplmented by
the following transformation of the time-like coordinate

tanh® Ht
tanh?(H71) = ———. 12
ant(117) = 0 (12
As a result of (11) and (12), the interval from (10) takes the following form
2
2 2,2\ 72 r 2 7092
ds :—(1—HT)dT +m+7‘d9. (13)

4 Mechanisms for Inflation (Silverstein)

Problem 3 (the solution follows quite closely hep-th/0404084)

The equations of motion for the homogeneous field in DBI inflation is given by

- 6., 4¢* 3H. V'
_ - 9+ —=0, 14
iU W (14)
where 7 is given by
1
M - (15)

The interesting to us limit corresponds to the v > 1, since in other case the
model reduces to the theory of the scalar field with ordinary kinetic term and the
effective potential V + ¢*/\. Notice that in this limit the last two terms of (14) are
subdominant.

The Friedmann equation reads as follows

_87TG
3

By taking the time derivative of this equation and taking into account (14) we arrive
at

H* (¢*/A = V). (16)

b= -1y S, (17)

In order to have an inflation the potential energy should dominate over the
kinetic energy (it easy to make sure that in this regime the the equation of state is
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almost the same as for the cosmological constant). Thus the Friedmann equation
given above reduces to

B 1
-3

H? (=V). (18)

Differentiating this equation we find that the condition of the domination of potential
energy gives (in Plank units)

VA=V

v > L (19)

While the v > 1 condition reduces to

)\V/2

i > b (20)

In contrary to the usual slow-roll conditions. It must be pointed out that the terms
in the expansion of the action in perturbations are enhanced by factors of ~, which
will lead to the strong non-Gaussianity.
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