
Problem Solution for Week One

Kai Schmitz, Victoria Martin, Nora Elisa Chisari, Alexander Chen

July 22, 2011

Problem 1.1

(a)

The action for the massless scalar field looks like

S =

∫
d4x
√
−ggµν∂µφ∂νφ =

∫
d4x

1

η4
η2
[
−(∂ηφ)2 + |∇xφ|2

]
(1)

From this action the equation of motion can be found to be

∂2
ηφ−

2

η
∂ηφ−∇2φ = 0 (2)

If we change into Fourier space then the equation looks like

∂2
ηφ−

2

η
∂ηφ+ |k|2 φ = 0 (3)

If we plug in the trial solution f(η) = C(1 + i |k| η)ei|k|η then we can straight-forwardly calculate the derivatives

∂ηf(η) = C |k|2 ηe−i|k|η, ∂2
ηf(η) = C |k|2 (1− i |k| η)e−i|k|η (4)

Therefore we have ∂2
ηf + |k|2 f = 2C |k|2 e−i|k|η = 2η−1∂ηf . Because the equation is real we expect that f∗ will

be a solution of the equation as well.

(b)

We know the commutator between creation and annihilation operators [a, a†] = 1. Writing

φk(η) = f(η)a†k + f∗(η)a−k (5)

We can work out the form of the conjugate momentum

π =
∂L

∂(∂ηφ)
= − 1

η2
∂ηφ = − 1

η2

(
f ′(η)a† + f ′(η)∗a

)
(6)

Therefore we can just calculate the canonical commutation relation and require it to be i in the end.

[φ, π] = − 1

η2

(
f∗f ′ − ff ′∗

)
= 2i |C|2 k3 (7)

Therefore the correct normalization is C = 1/
√

2k3.
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(c)

The Bunch-Davies vacuum is defined through a |BD〉 = 0. This definition makes sense because this is the state
where there is no quantum excitations. Furthermore, this state is well-defined because if we evolve the time back
into η = −∞ the theory looks like a free theory in Minkowski space, and there the vacuum is well-defined.

We want to evaluate the quantity 〈BD |φk(η)φ−k(η′)|BD〉. Plugging in the expression for the Fourier modes
of φ as in (5), we can get 〈

BD
∣∣∣(f(η)a†k + f∗(η)a−k

)(
f(η′)a†−k + f∗(η′)ak

)∣∣∣BD〉 (8)

Only one term survives because by definition we have a |BD〉 = 0, so the two point function is〈
BD

∣∣φk(η)φ−k(η′)
∣∣BD〉 = f∗(η)f(η′)〈BD|BD〉 =

1

2 |k|3
(1− i |k| η)(1 + i |k| η′)ei|k|(η−η′) (9)

(d)

The sum of all the Fourier modes is just the integral over the momentum space∫
d3k

(2π)3

eik·∆x

2 |k|3
(

1− i |k| (η − η′) + |k|2 ηη′
)
ei|k|(η−η

′) =
1

4π2

∫ ∞
0

dk

k

(
1− ik(η − η′) + k2ηη′

)
eik(η−η′) sin k |∆x|

k |∆x|
(10)

The integration can be carried out term by term. The first term gives a logarithmic divergence whereas the other
two terms gives a finite contribution. The result of integration is

log(0)− η − η′

|x− x′|
tanh−1

(
|x− x′|
η − η′

)
+

ηη′

(η − η′)2 − |x− x′|2
(11)

The logarithmic divergence is due to the spectrum of massless field. Because the scalar is massless and the
k = 0 mode is summed over, and they are extended over the whole space, therefore an infrared divergence is
expected in the correlation function.

Problem 2.6

We calculate the 3-point function
〈
φ~k1φ~k2φ~k3

〉
of a massless self-interacting scalar field φ in de Sitter space. The

interaction Hamiltonian Hint is given as

Hint (η) =

∫
d3x
√
−gHint (η, ~x) =

∫
d3x
√
−gM

6
φ3 (η, ~x) . (12)

g denotes the determinant of the de Sitter metric,

ds2 =
1

η2

(
−dη2 + d~x2

)
, g = − 1

η8
. (13)

The interaction Hamiltonian is used to construct the time evolution operator U ,

U (η) = T exp[−i
η∫

−∞

dη′Hint

(
η′
)
] . (14)
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U relates the vacuum |Ω〉 of the interacting theory at time η to the Bunch-Davies vacuum |BD〉 in the asymptotic
past,

|Ω (η)〉 = U (η) |BD〉 . (15)

The 3-point correlation function can hence be written as〈
φ~k1φ~k2φ~k3

〉
= 〈Ω (η)|φ~k1 (η)φ~k2 (η)φ~k3 (η) |Ω (η)〉 (16)

= 〈BD|U−1 (η)φ~k1 (η)φ~k2 (η)φ~k3 (η)U (η) |BD〉 . (17)

Expanding U up to first order in the coupling scale M yields

〈
φ~k1φ~k2φ~k3

〉
= −i

η∫
−∞

dη′ 〈BD|
[
φ~k1 (η)φ~k2 (η)φ~k3 (η) , Hint

(
η′
)]
|BD〉 . (18)

Notice that 〈BD|φ~k1φ~k2φ~k3 |BD〉 vanishes as an odd number of fields cannot facilitate an vacuum-to-vacuum

transition. Next, we insert Hint and expand all fields φ (η′, ~x) into Fourier modes.

〈
φ~k1φ~k2φ~k3

〉
= − iM

6

η∫
−∞

dη′

η′4

∫
d3x

∫
d3k4

∫
d3k5

∫
d3k6 e

i(~k4+~k5+~k6)~x (19)

× 〈BD|
[
φ~k1 (η)φ~k2 (η)φ~k3 (η) , φ~k4

(
η′
)
φ~k5

(
η′
)
φ~k6

(
η′
)]
|BD〉 .

The integral over position space provides us with a momentum delta function,∫
d3x ei(

~k4+~k5+~k6)~x = (2π)3 δ(3)
(
~k4 + ~k5 + ~k6

)
. (20)

The commutator matrix element in Eq. (19) may be written as

〈BD|
[
φ~k1 (η)φ~k2 (η)φ~k3 (η) , φ~k4

(
η′
)
φ~k5

(
η′
)
φ~k6

(
η′
)]
|BD〉 (21)

= 〈BD|Tφ~k1 (η)φ~k2 (η)φ~k3 (η) , φ~k4

(
η′
)
φ~k5

(
η′
)
φ~k6

(
η′
)
|BD〉 − c.c.

To see this, recall that the quantum Fourier modes φ~k of the scalar field are related to the solutions f~k of the
classical equations of motion as follows,

φ~k (η) = f~k (η) a†~k
+ f∗~k (η) a~k (22)

The φ~k are thus hermitian such that

〈BD|Tφ~k1 (η)φ~k2 (η)φ~k3 (η) , φ~k4

(
η′
)
φ~k5

(
η′
)
φ~k6

(
η′
)
|BD〉∗ (23)

= 〈BD|φ~k6 (η)φ~k5 (η)φ~k4 (η) , φ~k3

(
η′
)
φ~k2

(
η′
)
φ~k1

(
η′
)
|BD〉

The classical equations of motion are solved by

f~k (η) =
1√
2k3

(1 + ikη) e−ikη , k =
∣∣∣~k∣∣∣ . (24)
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The commutator of two Fourier modes therefore turns out to be[
φ~k (η) , φ~k′

(
η′
)]

=
(
f∗~k (η) f~k′

(
η′
)
− f~k (η) f∗~k′

(
η′
))
δ(3)

(
~k − ~k′

)
(25)

=
i

k3
Im
{

(1− ikη)
(
1 + ikη′

)
e−ik(η′−η)

}
δ(3)

(
~k − ~k′

)
.

It vanishes for equal times, η′ = η, so that the second line of Eq. (23) can be brought into the following form

〈BD|φ~k6 (η)φ~k5 (η)φ~k4 (η) , φ~k3

(
η′
)
φ~k2

(
η′
)
φ~k1

(
η′
)
|BD〉 (26)

= 〈BD|φ~k4 (η)φ~k5 (η)φ~k6 (η) , φ~k1

(
η′
)
φ~k2

(
η′
)
φ~k3

(
η′
)
|BD〉 .

Taken together, Eqs. (23) and (26) prove our statement in Eq. (21).
To evaluate the expectation value of the time-ordered product in Eq. (21) we consult Wick’s theorem,

〈BD|Tφ~k1 (η)φ~k2 (η)φ~k3 (η) , φ~k4

(
η′
)
φ~k5

(
η′
)
φ~k6

(
η′
)
|BD〉 (27)

= 3×W
{
φ~k1 (η)φ~k2 (η)

}
W
{
φ~k3 (η)φ~k4

(
η′
)}
W
{
φ~k5

(
η′
)
φ~k6

(
η′
)}

+ perm.

+ 6×W
{
φ~k1 (η)φ~k4

(
η′
)}
W
{
φ~k2 (η)φ~k5

(
η′
)}
W
{
φ~k3 (η)φ~k6

(
η′
)}

.

In the second line cyclic as well as anti-cyclic permutations have to be included. The W {φφ} products denote
Wick contractions,

W
{
φ~k (η)φ~k′

(
η′
)}

=


[
φ+
~k

(η) , φ−~k′
(η′)
]

; η ≥ η′[
φ+
~k′

(η′) , φ−~k
(η)
]

; η ≤ η′
(28)

where

φ+
~k

(η) = f∗~k (η) a~k , φ−~k
(η) = f~k (η) a†~k

. (29)

Analogously to Eq. (25) we find

W
{
φ~k (η)φ~k′

(
η′
)}

=

f
∗
~k

(η) f~k′ (η′) δ(3)
(
~k − ~k′

)
; η ≥ η′

f~k (η) f∗~k′
(η′) δ(3)

(
~k − ~k′

)
; η ≤ η′

. (30)

The term in the second line of Eq. (27) is therefore proportional to the following product of delta functions

W
{
φ~k1φ~k2

}
W
{
φ~k3φ~k4

}
W
{
φ~k5φ~k6

}
∝ δ(3)

(
~k1 − ~k2

)
δ(3)

(
~k3 − ~k4

)
δ(3)

(
~k5 − ~k6

)
(31)

The momenta in the first delta function are not integrated over. For ~k1 6= ~k2 this term thus vanishes. Similar
arguments apply to all its permutations. Finally, we obtain for the expectation value of the time-ordered product

〈BD|Tφ~k1 (η)φ~k2 (η)φ~k3 (η) , φ~k4

(
η′
)
φ~k5

(
η′
)
φ~k6

(
η′
)
|BD〉 (32)

= 6f∗~k1
(η) f∗~k2

(η) f∗~k3
(η) f~k4

(
η′
)
f~k5

(
η′
)
f~k6

(
η′
)
δ(3)

(
~k1 − ~k4

)
δ(3)

(
~k2 − ~k5

)
δ(3)

(
~k3 − ~k6

)

4



Group 13
Problem Set for Week 1

These three delta functions cancel the momentum integrals in our expression for the 3-point correlation function
in Eq. (19), 〈

φ~k1φ~k2φ~k3

〉
= − iM

6
(2π)3 δ(3)

(
~k1 + ~k2 + ~k3

)
6
(
f∗~k1

(η) f∗~k2
(η) f∗~k3

(η) Iη − c.c.
)

(33)

= 2M (2π)3 δ(3)
(
~k1 + ~k2 + ~k3

)
Im
{
f∗~k1

(η) f∗~k2
(η) f∗~k3

(η) Iη

}
where Iη denotes the remaining time integral,

Iη =

η∫
−∞

dη′

η′4
f~k1

(
η′
)
f~k2

(
η′
)
f~k3

(
η′
)

(34)

=

η∫
−∞

η′

η′4
(1 + ik1η)√

2k3
1

(1 + ik2η)√
2k3

2

(1 + ik3η)√
2k3

3

e−ikη , k = k1 + k2 + k3 .

It can conveniently be decomposed as follows,√
8k3

1k
3
2k

3
3 Iη = I(4)

η + ikI(3)
η − (k1k2 + k1k3 + k2k3) I(2)

η − ik1k2k3I
(1)
η (35)

with I
(n)
η being defined as

I(n)
η =

η∫
−∞

dη′

η′n
e−ikη . (36)

These integrals can be regularized by choosing the integration contour in the complex η plane such that the
oscillatory integrad vanishes in the asymptotic past. We set η → η (1 + iε) with ε > 0 which amounts to a smooth
transition from the de Sitter vacuum of the interacting theory to the free-field Minkowski vacuum. Integrating by

parts provides us with a recursion relation between the integrals I
(n)
η ,

I(n)
η =

1

η′n
e−i(1+iε)kη′

(−i) (1 + iε) k

∣∣∣∣∣
η

−∞

+
n

(−i) (1 + iε) k
I(n+1)
η . (37)

Taking the limit ε→ 0 we get

I(n+1)
η =

k

in
I(n)
η − 1

nηn
e−ikη . (38)

With the aid of this relation we can express I
(2)
η , I

(3)
η and I

(4)
η in terms of I

(1)
η ,

I(2)
η = − ikI(1)

η −
1

η
e−ikη (39)

I(3)
η = − k2

2
I(1)
η +

(
ik

2η
− 1

2η2

)
e−ikη (40)

I(4)
η = i

k3

6
I(1)
η +

(
k2

6η
+

ik

6η2
− 1

3η3

)
e−ikη (41)
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Plugging everything into Eq. (35) gives us√
8k3

1k
3
2k

3
3 Iη = iI(1)

η

[
k(k1k2 + k1k3 + k2k3)− k1k2k3 −

k3

3

]
(42)

+ e−ikη
[

1

η
(k1k2 + k1k3 + k2k3)− k2

3η
− ik

3η2
− 1

3η3

]
.

= − i

3
I(1)
η

(
k3

1 + k3
2 + k3

3

)
(43)

+ e−ikη
[

1

η
(k1k2 + k1k3 + k2k3)− k2

3η
− ik

3η2
− 1

3η3

]
This integral now needs to multipled by f∗~k1

f∗~k2
f∗~k3

,

8k3
1k

3
2k

3
3 f
∗
~k1

(η) f∗~k2
(η) f∗~k3

(η) Iη =
(
1− ikη − η2 (k1k2 + k1k3 + k2k3) + iη3k1k2k3

)
(44)

×
[
− i

3
eikηI(1)

η

(
k3

1 + k3
2 + k3

3

)
+

[
1

η
(k1k2 + k1k3 + k2k3)− k2

3η
− ik

3η2
− 1

3η3

]]
.

The imaginary part of this expression reads

8k3
1k

3
2k

3
3 Im

{
f∗~k1

(η) f∗~k2
(η) f∗~k3

(η) Iη

}
(45)

=
[
1− η2 (k1k2 + k1k3 + k2k3)

] [
−1

3
cos (kη) I(1)

η

(
k3

1 + k3
2 + k3

3

)
− k

3η2

]
+
[
η3k1k2k3 − ηk

] [1

3
sin (kη) I(1)

η

(
k3

1 + k3
2 + k3

3

)
+

[
1

η
(k1k2 + k1k3 + k2k3)− k2

3η
− 1

3η3

]]
.

= Pη (k1, k2, k3) I(1)
η +

k

3

(
k2 − 2k1k2 − 2k1k3 − 2k2k3

)
− 1

3
k1k2k3

+ η2k1k2k3

[(
k1k2 + k1k2 + k2k3 −

k2

3

)]
= Pη (k1, k2, k3) I(1)

η +
k

3

(
k2

1 + k2
2 + k2

3

)
− 1

3
k1k2k3 + η2k1k2k3

[(
k1k2 + k1k2 + k2k3 −

k2

3

)]
where Pη is a time-dependent polynomial in k1, k2 and k3,

Pη (k1, k2, k3) =
1

3

(
k3

1 + k3
2 + k3

3

) [
− cos (kη)

[
1− η2 (k1k2 + k1k3 + k2k3)

]
(46)

+ sin (kη)
[
η3k1k2k3 − ηk

] ]
Notice that here we have assumed that the leading term from I

(1)
η is real. Actually the imaginary part of I

(1)
η also

contributes to the above expression. This does not matter, however, as we are mainly interested in the limit η → 0
in any case. For very late times we have

I(1)
η =

η∫
−∞(1+iε)

dη′

η′
e−ikη = −iπ + Ei (−ikη)

η→0−→ γ + ln (kη) . (47)
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In this limit Eq.(45) becomes

8k3
1k

3
2k

3
3 Im

{
f∗~k1

(η) f∗~k2
(η) f∗~k3

(η) Iη

}
(48)

η→0−→ − 1

3

(
k3

1 + k3
2 + k3

3

)
(γ + ln (kη)) +

k

3

(
k2

1 + k2
2 + k2

3

)
− 1

3
k1k2k3

Our final result for the 3-point correlation function takes the following form〈
φ~k1φ~k2φ~k3

〉
=
M

12
(2π)3 δ(3)

(
~k1 + ~k2 + ~k3

)
(49)

×
(k1 + k2 + k3)

(
k2

1 + k2
2 + k2

3

)
− k1k2k3 −

(
k3

1 + k3
2 + k3

3

)
(γ + ln (kη))

k3
1k

3
2k

3
3

Problem 2.7

The broken symmetries are the 3 special conformal transformations. The correation functions of ξ are expectacion
values in the Bunch-Davies vacuum. This vacuum does not preserve the special conformal transformations, and
this is why we don’t have that symmetry in the correlation functions, even though the scalar fields are invariant
under the full de-Sitter space.

Problem 3.1

The de-Sitter space is defined using the hyperboloid in R1,4

− v2 + w2 + x2 + y2 + z2 = R2 (50)

The flat slicing of de-Sitter space is done by using 45 degree hyperplanes of the form v +w = f(τ), where f(τ) is
an 1-1 function. It makes sense to use the ansatz f(τ) = Reτ . To complement this construction, we can have

− v + w = Re−τ − F (51)

where F is an undeterminated function. Plugging this into the equation for de-Sitter space, we get

F =
x2 + y2 + z2

Reτ
(52)

Plug the above into the metric for R1,4 we can get

ds2 = −dv2 + dw2 + dx2 + dy2 + dz2

= −R2dτ2 + (x2 + y2 + z2)dτ2 − 2xdxdτ − 2ydydτ − 2zdzdτ + dx2 + dy2 + dz2
(53)

Now the only thing we need to do is to rescale x, y, and z to cancel the extra and cross terms. This can be done
by redefining x = f(τ)x̂, and similarly for y and z. Then we have

dxi = f ′(τ)x̂idτ + f(τ)dx̂i, dx2
i =

[
f ′(τ)

]2
x̂2
i dτ

2 + 2f(τ)f ′(τ)x̂idτdx̂i + f2(τ)dx̂2
i (54)

Pluging this into the above metric, in order to get all the cross terms cancel, we simply need f ′(τ) = f(τ). Solving
this equation we conveniently get f(τ) = Reτ . Therefore we can plug this into the metric and in the end we get

ds2 = R2
(
−dτ2 + e2τ (dx̂2 + dŷ2 + dẑ2)

)
(55)

The spatial metric is indeed a flat one.
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Problem 4.4

We can write down the action for the cosmic string after D3-brane inflation

S = − 1

2πgsα′

∫
dσdτ

√
det (Gµν∂αXµ∂βXν) (56)

where the metric can be taken as the metric for AdS5 ×X5, restricted to the uncompactified spacetime. Because
the metric for the whole space is

ds2 =
r2

R2
(−dt2 + dx2) +

R2

r2
dr2 + ds2

X5
(57)

the restriction is just the first part with a prefactor r2/R2. Plugging this metric into the above action, and evaluate
it at the place of brane collision at r0 we can get

Seff = − 1

2πgsα′

∫
dσdτ

√(
r2

0

R2

)2√
detηµν∂αXµ∂βXν

= − 1

2πgsα′

(r0

R

)2
∫
dσdτ

√
det (ηµν∂αXµ∂βXν)

(58)

Therefore the string tension is modified to be

T =
1

2πgsα′
r2

0

R2
(59)
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Problem 4 (Arkani-Hamed)

The equation of motion for the auxiliary field A is

∂L
∂A

=
√
−g
[
F ′′(A)(R−A)− F ′(A) + F ′(A)

]
= 0 (1)

This equation admits two solutions, one is the trivial one A = R. This plugged into the original action will give

S =

∫
d4x
√
−g
[
F ′(R)(R−R) + F (R)

]
=

∫
d4x
√
−gF (R) (2)

The second solution is F ′′(A) = 0, then the term F (A) + F ′(A)(R − A) can be treated as a Taylor expansion of
F (R) around A, and terms higher than first order vanish identically. Therefore the action is again reduced to

S =

∫
d4x
√
−g
[
F (A) + F ′(A)(R−A)

]
=

∫
d4x
√
−gF (R) (3)

In order to decouple the field A from the metric we need to do a conformal transformation gµν → Ω2gµν to
remove the F ′(A) in front of R. Under the conformal transformation the square root of the determinant transforms
as √

−g → Ω4√−g (4)

and the scalar curvature transforms as (c.f. Wald)

R→ Ω−2 [R− 6gµν∇µ∇ν ln Ω− 6gµν(∇µ ln Ω)(∇ν ln Ω)] (5)

Therefore it is clear that in order to decouple R with F ′(A) we only need to choose Ω = (F ′(A))−1/2. In addition,
the last term in the above equation looks like a kinetic term, if we define a new field as σ ∝ ln Ω. Because
ln Ω = −(1/2) lnF ′(A), we define

σ = − lnF ′(A) (6)

Then the action is transformed to

S →
∫
d4x
√
−g
[
R− 3

2
∇µ∇µσ −

3

2
gµν∂µσ∂νσ − Ω2A+ Ω4F (A)

]
=

∫
d4x
√
−g
[
R− 3

2
gµν∂µσ∂νσ − V (σ)

]
− 3

2

∫
d4x
√
−g 1√

−g
∂µ(
√
−g∇µσ)

(7)

The last term is the integration of a total derivative and can be discarded, and we define the potential as

V (σ) = Ω2A− Ω4F (A) =
A

F ′(A)
− F (A)

F ′(A)2
(8)

So we have shown that a F (R) theory is equivalent to GR plus a scalar with standard kinetic term.
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Problem 1 (Zaldarragia)

The dynamics of the scalar perturbations in the hot plasma before recombination are governed by the continuity
equation for the density fluctuations δ and the Euler euqation for the divergence θ of the corresponding velocity
field. Working in conformal Newtonian gauge Ma and Bertschinger arrive at the following equations for a single
uncoupled fluid [1]:

δ̇ = − (1 + ω)
(
θ − 3φ̇

)
− 3

ȧ

a

(
δP

δρ
− ω

)
δ , (9)

θ̇ = − ȧ

a
(1− 3ω) θ − ω̇

1 + ω
θ +

δP/δρ

1 + ω
k2δ − k2σ + k2ψ . (10)

Eq. (10) does not apply to the photon fluid as it is tightly coupled to the baryon fluid through Thomson and
Coulomb scatterings. One way to account for these scatterings is to employ the following effective equation for θ̇γ ,

θ̇γ = −R−1
(
θ̇b +

ȧ

a
θb − c2sk2δb

)
+ k2

(
1

4
δγ − σγ

)
+

1 +R

R
k2ψ . (11)

As shown by Ma and Bertschinger this equation is a good approximation to the exact equation in the tight-
coupling limit. Finally, the first-order perturbed Einstein equations yield an equation for the evolution of the
metric perturbations φ and ψ,

k2
(
φ̇+

ȧ

a
ψ

)
= 4πGa2

∑
i

(ρi + pi) θi . (12)

In a first step we will rewrite Eqs. (9) through (12) as mode equations in Fourier space using the notation and
approximations of Seljak in Ref. [2]. We need to apply the following changes:

• We neglect any form of shear stress as well as the sound speed in the baryon fluid:

σ, σγ , c
2
s = 0 . (13)

• We identify the Newtonian potential ψ with the spatial curvature fluctuations φ:

ψ = φ . (14)

• We replace δ, θ and φ by their Fourier components (suppressing any wavenumber index).

• We explicitly write θ as the divergence of the velocity field ~v. For any given perturbation mode with
wavevector ~k = kk̂ gravity sources only velocities in the density perturbations parallel to k̂. We thus take ~v
to be of the form ~v = −ivk̂ which implies

θ = i~k · ~v = kv . (15)

• We switch to dimensionless time and momentum variables x = τ/τr and κ = kτr. Notice that in contrast
to Seljak we stick to Ma and Bertschinger’s convention and work in units in which c = 1. τr denotes the
would-be conformal time at recombination if the universe had always been matter-dominated after the Big

2
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Bang. We can relate τr to observable parameters through the Friedmann equation corresponding to a purely
matter-dominated universe. In conformal coordinates we have(

da

dτ

)2

=
8πG

3
a4ρm =

8πG

3
aρ0m = H2

0Ωma , ρ0m =
a3 (τ)

a3 (τ0)
ρm , a (τ0) = 1 . (16)

Setting a (0) = 0, Eq. (16) is uniquely solved by a (τ) = H2
0Ωmτ

2/4. We thus find

τr =
2

H0

(
arec
Ωm

)1/2

, arec ' 1/1100 . (17)

From now on dots over time-dependent quantities may always refer to derivatives with respect to x,

ḟ =
d

dx
f = τr

d

dτ
f . (18)

• We introduce η = ȧ/a = τrda/dτ/a and yb = ρb/ργ such that R = 4
3ργ/ρb = 4

3y
−1
b .

After these modifications Eqs. (9) through (12) read:

δ̇ = − (1 + ω)
(
κv − 3φ̇

)
− 3η (δp/δρ− ω) δ , (19)

v̇ = − η (1− 3ω) v − ω̇

1 + ω
v +

δp/δρ

1 + ω
κδ + κφ , (20)

v̇γ = − 3

4
yb (v̇b + ηvb) +

κ

4
δγ +

(
1 +

3

4
yb

)
κφ , (21)

κ2
(
φ̇+ ηφ

)
= 4πGa2τ2r

∑
i

(ρi + pi)κvi . (22)

In a second step, let us use these equations to obtain the explicit mode equations for cold dark matter, photons
and the gravitational potential.

Cold dark matter Cold dark matter is pressureless such that ω = δpc/δρc = 0. Eqs. (19) and (20) thus
turn into

δ̇c = − κvc + 3φ̇ , (23)

v̇c = − ηvc + κφ . (24)

Photons The EOS for radiation reads p = ρ/3 which entails ω = δpc/δρc = 1/3. Eq. (19) then becomes

δ̇γ = −4

3
κvγ + 4φ̇ . (25)

In the tight-coupling limit we approximately have vb = vγ . Eq. (20) can be written as(
1 +

3

4
yb

)
v̇γ = −3

4
ybηvγ +

κ

4
δγ +

(
1 +

3

4
yb

)
κφ , (26)

or

v̇γ =
−ybηvγ + κδγ/3

4/3 + yb
+ κφ . (27)
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Gravitational potential The Friedmann equation tells us that

η2 =
8πG

3
a2τ2r (ργ + ρm) ⇔ 4πGa2τ2r =

3η2

2
(ργ + ρm)−1 . (28)

Evaluating the sum over all species i in Eq. (22) gives∑
i

(ρi + pi) vi = ρcvc + ρbvγ +
4

3
ργvγ (29)

Putting Eqs. (22), (28) and (29) together, we obtain

φ̇ = −ηφ+
3η2

2κ

ργ
ργ + ρm

[vγ (4/3 + ρb/ργ) + vcρc/ργ ] . (30)

Let y denote the scale factor normalized to its value at radiation-matter equality, y = a/aeq. We claim that then

ργ
ργ + ρm

=
1

1 + y
. (31)

To prove this, we first determine aeq. Evolving ργ and ργ from a = aeq to a = a (τ0) = 1 provides us with

ρeqγ =
1

a4eq
ρ0γ =

1

a3eq
ρ0m = ρeqm ⇒ aeq =

ρ0γ
ρ0m

. (32)

From this result we immediately see that

1

1 + y
=

1

1 + ρ0m
ρ0γ
a

=
a−4ρ0γ

a−4ρ0γ + a−3ρ0m
=

ργ
ργ + ρm

. (33)

Likewise, we find

ρb
ργ

=
ρm − ρc
ργ

=
ρm
ργ

(
1− ρc

ρm

)
=
a−3ρ0m
a−4ρ0γ

(
1− Ωc

Ωm

)
= y

(
1− Ωc

Ωm

)
. (34)

With yc = ρc/ργ = yΩc/Ωm we finally end up at

φ̇ = −ηφ+
3η2 [vγ (4/3 + y − yc) + vcyc]

2 (1 + y)κ
. (35)

Eqs. (23), (24), (25), (27) and (35) now represent the final set of mode equations. Before we are able to
solve them we need to determine the x depedence of y and η. Being proportional to the scale factor y solves the
Friedmann equation

ẏ2 =
8πG

3
a2eqτ

2
r ρ

eq
m(1 + y) = 4α2(1 + y) (36)

with (cf. Eq.(17))

α2 =
8πG

3
a2eq

τ2r
4
ρeqm =

8πG

3

τ2r
4

ρ0m
aeq

=
arec
aeq

. (37)
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The solution of Eq. (36) is given by

y = (αx)2 + 2αx , (38)

since then

ẏ = 2α (αx+ 1) , ẏ2 = 4α2
(

(αx)2 + 2αx+ 1
)

= 4α2 (y + 1) . (39)

From this the x dependence of η trivially follows,

η = ȧ/a = ẏ/y =
2α (αx+ 1)

(αx)2 + 2αx
. (40)

At this stage we are ready to hand the mode equations over to Mathematica. Using the command NDSolve
we solve our set of equations for the same initial conditions as Seljak in his paper [2]. As initial x value we choose
xmin = 10−3. The result is shown in figure 1. The only cosmological parameters the scalar perturbations depend

Φ + ∆Γ�4

vΓ

Wmh
2 =0.135

Wbh
2 =0.023

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

log Κ

Figure 1: Plot of the Solutions Evolved to Recombination

on are the physical energy densities in matter and baryons Ωmh
2 and Ωbh

2. We set this two parameters to the
latest WMAP values

Ωmh
2 = 0.135 , Ωbh

2 = 0.023 . (41)
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