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What is the holographic principle?

I In its most general form, the holographic principle is
a relation between the geometry and information content
of spacetime

I This relation manifests itself in the
Covariant Entropy Bound



Covariant Entropy Bound
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For any two-dimensional surface B of area A, one can con-
struct lightlike hypersurfaces called light-sheets. The total
matter entropy on any light-sheet is less than A/4 in Planck
units: S ≤ A/4G~.



Covariant Entropy Bound
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A light-sheet is generated by nonexpanding light-rays or-
thogonal to the initial surface B. Out of the 4 null directions
orthogonal to B, at least 2 will have this property.
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I If B is closed and “normal”, the light-sheet directions will
coincide with our intuitive notion of the “interior” of B

I But if B is trapped (anti-trapped) the light-sheets go only to
the future (to the past).
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I The CEB is completely general: it appears to hold for
arbitary physically realistic matter systems and arbitrary
surfaces in any spacetime that solves Einstein’s equation

I The CEB can be checked case by case; no
counterexamples are known

I But it seems like a conspiracy every time.
The Origin of the CEB is not known!

I This is similar to the “accident” that inertial mass is equal
to gravitational charge



What is the holographic principle?
F1

F3

B

2F

4F

time

I The CEB is completely general: it appears to hold for
arbitary physically realistic matter systems and arbitrary
surfaces in any spacetime that solves Einstein’s equation

I The CEB can be checked case by case; no
counterexamples are known

I But it seems like a conspiracy every time.
The Origin of the CEB is not known!

I This is similar to the “accident” that inertial mass is equal
to gravitational charge



What is the holographic principle?

I Solution: Elevate this to a principle and demand a theory in
which it could be no other way!

I Equivalence Principle→ General Relativity
I Holographic Principle→

Quantum Gravity
I Because the CEB involves both the quantum states of

matter and the geometry of spacetimes, any theory that
makes the CEB manifest must be a theory of everything,
i.e., quantum gravity theory that also specifies the matter
content. (Example of a candidate: string theory.)

I After I present the CEB in these lectures,
could someone please do that last step.

I In particular, please explain how the CEB and locality fit
together!
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What is entropy?

I Entropy is the (log of the) number of independent quantum
states compatible with some set of macroscopic data
(volume, energy, pressure, temperature, etc.)

I The relevant boundary condition for our purposes is that
the matter system should fit on a light-sheet of a surface of
area A (roughly, that it fits within a sphere of that area)



Plan

I The plan of my lectures is to present the kind of thinking
that eventually led to the discovery of the CEB, to explain
the CEB in more detail, and to explore its implications

I For a review article, see “The holographic principle”,
Reviews of Modern Physics, hep-th/0203101
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Black hole entropy

I A black hole is a thermodynamic object endowed with
energy, temperature, and entropy [Bekenstein, Hawking,
others (1970s)]

I The energy is just the mass; the temperature is
proportional to the “surface gravity”; and the entropy is
equal to one quarter of the horizon area, in Planck units:

S = A/4G~



Black hole entropy

I For example, a nonrotating uncharged (“Schwarzschild”)
black hole of radius R and horizon area A = 4πR2 has

E = M = R/2G

S = πR2/G~

T = ~/4πR



Black hole entropy

I But why do we believe this?
I Black hole entropy was proposed first [Bekenstein 1972],

before Hawking discovered black hole temperature and
radiation [Hawking 1974]

I Bekenstein’s argument went like this:



Do black holes destroy entropy?

I Throw an object with entropy S into a black hole
I By the “no-hair theorem”, the final result will be a (larger)

black hole, with no classical attributes other than mass,
charge, and angular momentum

I This state would appear to have no or negligible entropy,
independently of S

I So we have a process in which dS < 0
I The Second Law of Thermodynamics appears to be

violated!



Bekenstein entropy

I In order to rescue the Second Law, Bekenstein proposed
that black holes themselves carry entropy

I Hawking (1971) had already proven the “area law”, which
states that black hole horizon area never decreases in any
process:

dA ≥ 0

I So the horizon area seemed like a natural candidate for
black hole entropy. On dimensional grounds, the entropy
would have to be of order the horizon area in Planck units:

SBH ∼ A

I (This was later confirmed, and the factor 1/4 determined,
by Hawking’s calculation of the temperature and the
relation dS = dE/T )
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The Generalized Second Law

I With black holes carrying entropy, it is no longer obvious
that the total entropy decreases when a matter system is
thrown into a black hole

I Bekenstein proposed that a Generalized Second Law of
Thermodynamics remains valid in processes involving the
loss of matter into black holes

I The GSL states that dStotal ≥ 0, where

Stotal = SBH + Smatter



Is the GSL true?

I However, it is not obvious that the GSL actually holds!
I The question is whether the black hole horizon area

increases by enough to compensate for the lost matter
entropy

I If the initial and final black hole area differ by ∆A, is it true
that

Smatter ≤ ∆A/4 ?

I Note that this would have to hold for all types of matter and
all ways of converting the matter entropy into black hole
entropy!



Testing the GSL

I Let’s do a few checks to see if the GSL might be true
I There are two basic processes we can consider:
I Dropping a matter system to an existing black hole, and
I Creating a new black hole by compressing a matter system

or adding mass to it

I Let’s consider an example of the second type



Testing the GSL

I Let’s do a few checks to see if the GSL might be true
I There are two basic processes we can consider:
I Dropping a matter system to an existing black hole, and
I Creating a new black hole by compressing a matter system

or adding mass to it
I Let’s consider an example of the second type



Testing the GSL

I Spherical box of radius R, filled with radiation at
temperature at temperature T , which we slowly increase

I Let Z be the effective number of massless particle species
I S ≡ Smatter ≈ ZR3T 3, so the entropy increases arbitrarily?!
I However, the box cannot be stable if its mass, M ≈ ZR3T 4,

exceeds the mass of a black hole of the same radius,
M ≈ R.

I A black hole must form when T ≈ Z−1/4R−1/2. Just before
this point, the matter entropy is

S ≈ Z 1/4A3/4



Testing the GSL

I After the black hole forms, the matter entropy is gone and
the total entropy is given by the black hole horizon area,
S = A/4.

I This is indeed larger than the initial entropy, Z 1/4A3/4, as
long as A & Z , which is just the statement that the black
hole is approximately a classical object.

I (We require this in any case since we wish to work in a
setting where classical gravity is a good description.)

I So in this example the GSL is satisfied



Entropy bounds from the GSL

I In more realistic examples, such as the formation of black
holes by the gravitational collapse of a star, the GSL is
upheld with even more room to spare

I As our confidence in the GSL grows, it is tempting to turn
the logic around and assume the GSL to be true

I Then we can derive a bound on the entropy of arbitrary
matter systems, namely

Smatter ≤ ∆A/4 ,

where ∆A is the increase in horizon entropy when the
matter system is converted into or added to a black hole



Spherical entropy bound

I For example, consider an arbitrary spherical matter system
of mass m that fits within a sphere of area A ∼ R2.

I We could presumably collapse a shell of mass R/G −m
around this system to convert it into a black hole, also of
area A

I The GSL implies that Smatter ≤ A/4, i.e., that the entropy of
any matter system is less than the area of the smallest
sphere that encloses it

I In this sense the world is like a hologram!
I The amount of information needed to fully specify the

quantum state in a spherical region fits on its boundary, at
a density of order one qubit per Planck area.

I Local QFT is hugely redundant; there are only exp(A/4)
states
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Bekenstein bound

I A tighter bound results from a cleverer process:
I Slowly lower the matter system into a very large black hole,

to minimize ∆A
I This decreases the energy of the system at infinity, by a

redshift factor, before it is dropped in
I The mass added to the black hole is nonzero, however,

because the system has finite size
I After some algebra (see hep-th/0203101), one finds

S ≤ 2πMR/~

I We will return to this bound later but focus for now on the
holographic bound, S ≤ A/4G~



Limitations

I The derivation of the above bounds from the GSL is
somewhat handwaving

I E.g., what if some mass is shed before the black hole
forms? It is difficult to treat gravitational collapse processes
exactly except in overly idealized limits

I Moreover, the derivation implicitly assumes that we are
dealing with a matter system that has weak self-gravity
(M � R).

I Hence, it does not imply that S ≤ A/4 for all matter
systems.

I Will shortly see that indeed, the bound does not hold for
some matter systems, if S is naively defined as the entropy
“enclosed” by the surface



Entropy bounds vs. GSL

I Modern viewpoint: CEB→ GSL.
I CEB is primary and holds for all matter systems
I CEB implies the GSL in the special case where the

relevant surface is chosen to lie on the horizon of a black
hole

I But CEB holds true in situations where it clearly cannot be
derived from the GSL

I CEB reduces to statements resembling the above bounds
in certain limits



Towards formulating the CEB

I But how should we define S? Why do we need
light-sheets?

I To motivate the CEB, it is instructive to consider a more
straightforward guess at a general entropy bound and see
why it fails



Introduction

Entropy bounds from black holes

Spacelike entropy bound and bounds on small regions

Covariant Entropy Bound

AdS/CFT

Holographic screens in general spacetimes



Spacelike Entropy Bound

time
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I SEB: S[V ] ≤ A[B]/4, for any 3-dimensional volume V
I I will now give four counterexamples to this bound



(1) Closed universe

The Holographic Principle for General Backgrounds 9

as the two-sphere area goes to zero [1]. This illustrates the power of the decreasing area

rule.
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Figure 4. The closed FRW universe. A small two-sphere divides the S3

spacelike sections into two parts (a). The covariant bound will select the small

part, as indicated by the normal wedges (see Fig. 1d) near the poles in the

Penrose diagram (b). After slicing the space-time into a stack of light-cones,

shown as thin lines (c), all information can be holographically projected towards

the tips of wedges, onto an embedded screen hypersurface (bold line).

5.4. Questions of proof

More details and additional tests are found in Ref. [1]. No physical counterexample

to the covariant entropy bound is known (see the Appendix). But can the conjecture

be proven? In contrast with the Bekenstein bound, the covariant bound remains valid

for unstable systems, for example in the interior of a black hole. This precludes any

attempt to derive it purely from the second law. Quite conversely, the covariant bound

can be formulated so as to imply the generalized second law [17].

FMW [17] have been able to derive the covariant bound from either one of two sets

of physically reasonable hypotheses about entropy flux. In effect, their proof rules out

a huge class of conceivable counterexamples. Because of the hypothetical nature of the

FMW axioms and their phenomenological description of entropy, however, the FMW

proof does not mean that one can consider the covariant bound to follow strictly from

currently established laws of physics [17]. In view of the evidence we suggest that the

covariant holographic principle itself should be regarded as fundamental.

6. Where is the boundary?

Is the world really a hologram [5]? The light-sheet formalism has taught us how to

associate entropy with arbitrary 2D surfaces located anywhere in any spacetime. But

to call a space-time a hologram, we would like to know whether, and how, all of its

information (in the entire, global 3+1-dimensional space-time) can be stored on some

surfaces. For example, an anti-de Sitter “world” is known to be a hologram [6, 9]. By

this we mean that there is a one-parameter family of spatial surfaces (in this case, the

I Let V be almost all of a closed three-dimensional space,
except for a small region bounded by a tiny sphere B.

I The SEB should apply, S[V ] ≤ A[B]/4, but we can choose
S[V ] arbitrarily large, and A[B] arbitrarily small

I (This type of “arbitrarily bad” violation can be found for any
proposed entropy bound other than the CEB; all our
counter-examples to the SEB will be of this type.)
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(2) Flat FRW universe

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2)

I (E.g., with radiation, a(t) ∼ t1/2

and the physical entropy density is σ ∼ t−3/2)
I Consider a volume of physical radius R at fixed time t :

V ∼ R3 ; A[B] ∼ R2

S[V ] ∼ σR3

I In large volumes of space (R & σ−1), the SEB is violated
I S/A→∞ as R →∞



(3) Collapsing star

I Consider a collapsing star (idealize as spherical dust
cloud)

I Its initial entropy S0 can be arbitrarily large
I Let V be the volume occupied by the star just before it

crunches to a singularity
I (This is well after it crosses its own Schwarzschild radius,

so gravity is dominant and the surface of the star is
trapped)

I From collapse solutions we know that A[B]→ 0 in this limit
I From the (ordinary) Second Law, we know that S[V ] ≥ S0

I So we can arrange S[V ] > A[B]/4 and, indeed, S/A→∞



Give up?

I Perhaps there exists no general entropy bound of the form
S ≤ A/4, which holds for arbitrary regions?

I Instead try to characterize spatial regions that are in some
sense sufficiently small, such that the SEB always holds for
all of these “special” regions?

I E.g., interior of apparent horizon in FRW, interior of particle
horizon, interior of Hubble horizon, etc.?

I Not well-defined beyond highly symmetric solutions
I Counterexamples have been found to all of these

proposals, so
I Retreating from generality doesn’t help!
I The notion of a “sufficiently small spatial region” conflicts

with general covariance! (See next counterexample.)
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(4) Nearly null boundaries
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I Consider an ordinary matter system of constant entropy S
I Choose V such that B is Lorentz-contracted everywhere
I In the null limit A[B]→ 0, so again,
I the SEB is violated
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Null geodesic congruences

out orthogonally1 from B. But we have four choices: the family of light-
rays can be future-directed outgoing, future-directed ingoing, past-directed
outgoing, and past-directed ingoing (see Fig. 1). Which should we select?

time

space

B

F1

F2

F3

F4

Figure 1: There are four families of light-rays projecting orthogonally away from
a two-dimensional surface B, two future-directed families (one to each side of
B) and two past-directed families. At least two of them will have non-positive
expansion. The null hypersurfaces generated by non-expanding light-rays will be
called “light-sheets.” The covariant entropy conjecture states that the entropy on
any light-sheet cannot exceed a quarter of the area of B.

And how far may we follow the light-rays?
In order to construct a selection rule, let us briefly return to the limit in

which Bekenstein’s bound applies. For a spherical surface around a Beken-
stein system, the enclosed entropy cannot be larger than the area. But the

1While it may be clear what we mean by light-rays which are orthogonal to a closed
surface B, we should also provide a formal definition. In a convex normal neighbourhood
of B, the boundary of the chronological future of B consists of two future-directed null
hypersurfaces, one on either side of B (see Chapter 8 of Wald [19] for details). Similarly, the
boundary of the chronological past of B consists of two past-directed null hypersurfaces.
Each of these four null hypersurfaces is generated by a congruence of null geodesics starting
at B. At each point on p ∈ B, the four null directions orthogonal to B are defined by
the tangent vectors of the four congruences. This definition can be extended to smooth
surfaces B with a boundary ∂B: For p ∈ ∂B, the four orthogonal null directions are the
same as for a nearby point q ∈ B − ∂B, in the limit of vanishing proper distance between
p and q. We will also allow B to be on the boundary of the space-time M , in which case
there will be fewer than four options. For example, if B lies on a boundary of space, only
the ingoing light-rays will exist. We will not make such exceptions explicit in the text, as
they are obvious.

7

I Any 2D spatial surface B bounds four (2+1D) null
hypersurfaces

I Each is generated by a congruence of null geodesics ⊥ B



Expansion of a null congruence
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I θ ≡ ∇̂aka, where ka is the affine tangent vector field to the
congruence (see Wald)

I In terms of an infinitesimal area element A spanned by
nearby light-rays,

θ =
dA/dλ
A

I θ < 0↔ contraction;
I θ → −∞↔ caustic (“focal point”, “conjugate point to B”)



Light-sheets

I A light-sheet of B is a null hypersurface L ⊥ B with
boundary B and θ ≤ 0 everywhere on L

I Note: Assuming the null energy condition (Tabkakb ≥ 0)
holds,

I there are at least two null directions away from B for which
θ ≤ 0 initially

I dθ/dλ ≤ −θ2/2, so a caustic is reached in finite affine time
I If we think of generating L by following null geodesics away

from B, we must stop as soon as θ becomes positive
I In particular, we must stop at any caustic



Covariant Entropy Bound

The total matter entropy on any light-sheet of B is bounded
by the area of B:

S[L(B)] ≤ A[B]/4G~



Allowed light-sheet directionsThe Holographic Principle for General Backgrounds 4

time

space

(b) A

(a)

        (d1)   (d2)    (d3)(c)

A

A

V

V2

1

Figure 1. [In (a,b) we have suppressed one spatial dimension (surface → line).

In (c,d) we have suppressed two (surface → point). A fixed light-like angle

separates spacelike and timelike directions.]

The spatial volume V enclosed by a surface A depends on time slicing (a).

Thus the original formulation of the holographic principle was not covariant.

However, A is the 2D boundary of four 2+1D light-like hypersurfaces (b). They

are covariantly generated by the past- and future-directed light-rays going to

either side of A. E.g., for a normal spherical surface they are given by two

cones and two “skirts” (b).

In a Penrose diagram, where spheres are represented by points, the

associated null hypersurfaces show up as the 4 legs of an X (c). Null

hypersurfaces with decreasing cross-sectional area, such as the two cones in

(b), are called light-sheets. The entropy passing through them cannot exceed

A/4 (covariant entropy bound).

The light-sheets for normal (d1), trapped (d2), and anti-trapped (d3)

spherical surfaces are shown. If gravity is weak, as in (b), the light-sheet

directions agree with our intuitive notion of “inside” (d1). For surfaces in

a black hole interior, both of the future-directed hypersurfaces collapse (d2).

Near the big bang, the cosmological expansion means that the area decreases

on both past-directed hypersurfaces (d3).

FRW universes, to which the Bekenstein bound could not be applied. In closed or

collapsing space-times, however, the FS bound is not valid [10, 14]. At the root of this

difficulty lies the ambiguity of the concept of “inside” in curved, dynamic space-times.

For a closed surface in asyptotically flat space, the definition seems obvious: “Inside” is

the side on which infinity is not. But what if space is closed? For example, which side

is inside the equatorial surface (an S2) of a three-sphere?

We propose a different definition which is unambiguous, local, and covariant. Inside

is where the cross-sectional area decreases. Consider a two-sphere in flat space (Fig. 2a).

Let us pretend that we do not know which side is inside. We can make an experiment to

find out. We measure the area of the surface. Now, we move every point of the surface

by some fixed infinitesimal distance along surface-orthogonal rays (radial rays in this

case), to one particular side. If this increases the area, it was the outside. If the area

I Often we consider spherically symmetric spacetimes
I In a Penrose diagram, a sphere is represented by a point
I The allowed light-sheet directions can be represented by

wedges
I This notation will be useful as we analyze examples
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shown as thin lines (c), all information can be holographically projected towards

the tips of wedges, onto an embedded screen hypersurface (bold line).

5.4. Questions of proof

More details and additional tests are found in Ref. [1]. No physical counterexample

to the covariant entropy bound is known (see the Appendix). But can the conjecture

be proven? In contrast with the Bekenstein bound, the covariant bound remains valid

for unstable systems, for example in the interior of a black hole. This precludes any

attempt to derive it purely from the second law. Quite conversely, the covariant bound

can be formulated so as to imply the generalized second law [17].

FMW [17] have been able to derive the covariant bound from either one of two sets

of physically reasonable hypotheses about entropy flux. In effect, their proof rules out

a huge class of conceivable counterexamples. Because of the hypothetical nature of the

FMW axioms and their phenomenological description of entropy, however, the FMW

proof does not mean that one can consider the covariant bound to follow strictly from

currently established laws of physics [17]. In view of the evidence we suggest that the

covariant holographic principle itself should be regarded as fundamental.

6. Where is the boundary?

Is the world really a hologram [5]? The light-sheet formalism has taught us how to

associate entropy with arbitrary 2D surfaces located anywhere in any spacetime. But

to call a space-time a hologram, we would like to know whether, and how, all of its

information (in the entire, global 3+1-dimensional space-time) can be stored on some

surfaces. For example, an anti-de Sitter “world” is known to be a hologram [6, 9]. By

this we mean that there is a one-parameter family of spatial surfaces (in this case, the



(2) Flat FRW universe

Here f(χ) = sinh χ, χ, sin χ corresponds to open, flat, and closed universes
respectively. FRW universes contain homogeneous, isotropic spacelike slices
of constant (negative, zero, or positive) curvature. We will not discuss open
universes, since they display no significant features beyond those arising in
the treatment of closed or flat universes.

The matter content will be described by Tab = diag(ρ, p, p, p), with pres-
sure p = γρ. We assume that ρ ≥ 0 and −1/3 < γ ≤ 1. The case γ = −1
corresponds to de Sitter space, which was discussed in Sec. 3.3. The apparent
horizon is defined geometrically as the spheres on which at least one pair of
orthogonal null congruences have zero expansion. It is given by

η = qχ, (3.11)

where

q =
2

1 + 3γ
. (3.12)

The solution for a flat universe is given by

a(η) =

(
η

q

)q

. (3.13)

Its causal structure is shown in Fig. 6. The interior of the apparent horizon,
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Figure 6: Penrose diagram for a flat FRW universe dominated by radiation. The
apparent horizon, η = χ, divides the space-time into a normal and an anti-trapped
region (a). The information contained in the universe can be projected along past
light-cones onto the apparent horizon (b), or along future light-cones onto null
infinity (c). Both are preferred screen-hypersurfaces.

η ≥ qχ, can be projected along past light-cones centered at χ = 0, or by
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I Sufficiently large spheres at fixed time t are anti-trapped
I Only past-directed light-sheets are allowed
I The entropy on these light-sheets grows only like R2



(3) Collapsing star
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I At late times the surface of the star is trapped
I Only future-directed light-sheets exist
I They do not contain all of the star



(4) Nearly null boundaries
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I The null direction orthogonal to B is not towards the center
of the system

I The light-sheets miss most of the system, so S → 0 as
A[B]→ 0
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Figure 4: Every point p in Anti-de Sitter space is associated to a boundary scale δ. This

relation is completely determined by causality (left; only a small portion of the boundary is

shown). It implies the well-known UV-IR connection of the AdS/CFT correspondence (right;

here the global geometry is shown).

degrees of freedom also become localized at p. Both of these assumptions hold true in

AdS/CFT, but they are of course far weaker than the full duality.2

Let us define a coordinate δ ≡ LAdS/r. By Eq. (2.2), δ ≈ π
2
− ρ near the boundary,

where we can approximate the AdS metric as

ds2 =
1

δ2

�
−dτ 2 + dδ2 + dx2

�
, 0 ≤ δ � 1 , |x| � 1 ; (2.4)

see Fig. 4 (left). In otherwise empty AdS space, consider an excitation localized at

τ = 0, x = 0 on the boundary, δ = 0. As this excitation propagates into the bulk,

causality requires that it remain localized within the light-cone, δ2 + |x|2 ≤ τ 2. As

it propagates on the boundary, causality of the CFT requires that it remain within

|x|2 ≤ τ 2. It will suffice to consider values of τ � 1.

Now let us impose an infrared cut-off r � LAdS/δ̄c on the bulk, ignoring all points

with δ � δ̄c. The above excitation first enters the surviving portion of the bulk at the

time τ1 ∼ δ̄c, at the point x = 0. Let us also impose an ultraviolet cut-off |∆x| � δc

on the boundary, ignoring modes smaller than δc. Then the above excitation is first

2A closely related argument was presented in Ref. [15] in a different context; see in particular Sec. 5

therein.

– 6 –

I First complete, nonperturbative quantum theory of gravity
I An asymptotically AdS spacetime is described by a

conformal field theory on the boundary
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causality requires that it remain localized within the light-cone, δ2 + |x|2 ≤ τ 2. As
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with δ � δ̄c. The above excitation first enters the surviving portion of the bulk at the
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on the boundary, ignoring modes smaller than δc. Then the above excitation is first

2A closely related argument was presented in Ref. [15] in a different context; see in particular Sec. 5

therein.
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I There exists a cutoff version of this correspondence: A
CFT with UV cutoff δ describes AdS out to a sphere of
area A

I The relation A(δ) is such that the log of the dimension of
the CFT Hilbert space is of order A

I The holographic principle is manifest!
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...but we don’t yet know how the encoding works
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I AdS is very special; the dual theory is a unitary field theory
sharing the same time variable

I This is related to a property of the holographic screen in
AdS



Understanding holography in cosmology is hard
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Figure 3: A classical black hole forms in a scattering process. The spheres within
the apparent horizon are trapped (a). All information can be projected along past
light-cones onto I− (b). But I+ only encodes the information outside the black
hole; this reflects the information loss in the classical black hole. The black hole
interior can be projected onto the apparent horizon (c).

condition [17] holds, the expansion becomes positive only at “caustics,” or
focal points, of the light-rays. Caustics thus are the generic endpoints of
light-sheets [1].) This leads to a situation which would not be possible in a
classical space-time. There exists a hypersurface H , namely the black hole
apparent horizon during evaporation, from which one has to project away in
both directions. Thus, past-directed ingoing light-rays map H onto a differ-
ent part of the apparent horizon (h), and future-directed outgoing light-rays
map it onto a part of I+.

A digression on unitarity

Let us examine the evaporation process in more detail. When a negative
mass particle enters the horizon, the expansion of the generators of the hori-
zon changes from zero to a positive value. There will be a nearby null con-
gruence, inside the black hole, whose expansion is changed from a negative
value to zero by the same process. This congruence will now generate the
apparent horizon. Since it has smaller cross-sectional area, the horizon has
shrunk. The movement of the apparent horizon will leave behind a trace in
the Hawking radiation, causing a deviation from a thermal spectrum over
and above the deviation caused by greybody factors. This is similar to the
distortion in the thermal spectrum of radiation enclosed in a cavity, while

14

I In general spacetimes, it would seem that the number of
degrees of freedom has to change as a function of the time
parameter along the screen

I The screen is not unique
I The screen can even be spacelike and it need not be

connected
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