Entropy bounds and the holographic principle

Raphael Bousso

Berkeley Center for Theoretical Physics
University of California, Berkeley

PiTP 2011



Introduction



What is the holographic principle?

» In its most general form, the holographic principle is
a relation between the geometry and information content
of spacetime

» This relation manifests itself in the
Covariant Entropy Bound



Covariant Entropy Bound
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For any two-dimensional surface B of area A, one can con-
struct lightlike hypersurfaces called light-sheets. The total
matter entropy on any light-sheet is less than A/4 in Planck
units: S < A/4Gh.




Covariant Entropy Bound
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A light-sheet is generated by nonexpanding light-rays or-
thogonal to the initial surface B. Out of the 4 null directions
orthogonal to B, at least 2 will have this property.




Covariant Entropy Bound
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» If Bis closed and “normal”, the light-sheet directions will
coincide with our intuitive notion of the “interior” of B

» But if Bis trapped (anti-trapped) the light-sheets go only to
the future (to the past).
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» The CEB is completely general: it appears to hold for
arbitary physically realistic matter systems and arbitrary
surfaces in any spacetime that solves Einstein’s equation

» The CEB can be checked case by case; no
counterexamples are known

» But it seems like a conspiracy every time.
The Origin of the CEB is not known!
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» The CEB is completely general: it appears to hold for
arbitary physically realistic matter systems and arbitrary
surfaces in any spacetime that solves Einstein’s equation

» The CEB can be checked case by case; no
counterexamples are known

» But it seems like a conspiracy every time.
The Origin of the CEB is not known!

» This is similar to the “accident” that inertial mass is equal
to gravitational charge
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What is the holographic principle?

» Solution: Elevate this to a principle and demand a theory in
which it could be no other way!

» Equivalence Principle — General Relativity

» Holographic Principle — Quantum Gravity

» Because the CEB involves both the quantum states of
matter and the geometry of spacetimes, any theory that
makes the CEB manifest must be a theory of everything,
i.e., quantum gravity theory that also specifies the matter
content. (Example of a candidate: string theory.)

» After | present the CEB in these lectures,
could someone please do that last step.

» In particular, please explain how the CEB and locality fit
together!



What is entropy?

» Entropy is the (log of the) number of independent quantum
states compatible with some set of macroscopic data
(volume, energy, pressure, temperature, etc.)

» The relevant boundary condition for our purposes is that

the matter system should fit on a light-sheet of a surface of
area A (roughly, that it fits within a sphere of that area)



Plan

» The plan of my lectures is to present the kind of thinking
that eventually led to the discovery of the CEB, to explain
the CEB in more detail, and to explore its implications

» For a review article, see “The holographic principle”,
Reviews of Modern Physics, hep-th/0203101



Entropy bounds from black holes



Black hole entropy

» A black hole is a thermodynamic object endowed with
energy, temperature, and entropy [Bekenstein, Hawking,
others (1970s)]

» The energy is just the mass; the temperature is
proportional to the “surface gravity”; and the entropy is
equal to one quarter of the horizon area, in Planck units:

S = A/4Gh



Black hole entropy

» For example, a nonrotating uncharged (“Schwarzschild”)
black hole of radius R and horizon area A = 47 R? has

E=M=R/2G

S = nR?/Gh
T = h/47R



Black hole entropy

» But why do we believe this?

» Black hole entropy was proposed first [Bekenstein 1972],
before Hawking discovered black hole temperature and
radiation [Hawking 1974]

» Bekenstein’s argument went like this:



Do black holes destroy entropy?

» Throw an object with entropy S into a black hole

» By the “no-hair theorem”, the final result will be a (larger)
black hole, with no classical attributes other than mass,
charge, and angular momentum

» This state would appear to have no or negligible entropy,
independently of S

» So we have a process in which dS < 0

» The Second Law of Thermodynamics appears to be
violated!



Bekenstein entropy

» In order to rescue the Second Law, Bekenstein proposed
that black holes themselves carry entropy

» Hawking (1971) had already proven the “area law”, which
states that black hole horizon area never decreases in any

process:
dA>0

» So the horizon area seemed like a natural candidate for
black hole entropy. On dimensional grounds, the entropy
would have to be of order the horizon area in Planck units:

SgH ~ A



Bekenstein entropy

» In order to rescue the Second Law, Bekenstein proposed
that black holes themselves carry entropy

» Hawking (1971) had already proven the “area law”, which
states that black hole horizon area never decreases in any

process:
dA>0

» So the horizon area seemed like a natural candidate for
black hole entropy. On dimensional grounds, the entropy
would have to be of order the horizon area in Planck units:

SgH ~ A

» (This was later confirmed, and the factor 1/4 determined,
by Hawking’s calculation of the temperature and the
relation dS = dE/T)



The Generalized Second Law

» With black holes carrying entropy, it is no longer obvious
that the total entropy decreases when a matter system is
thrown into a black hole

» Bekenstein proposed that a Generalized Second Law of
Thermodynamics remains valid in processes involving the
loss of matter into black holes

» The GSL states that dSo1; > 0, where

Stotal = SBH + Smatter



Is the GSL true?

» However, it is not obvious that the GSL actually holds!

» The question is whether the black hole horizon area
increases by enough to compensate for the lost matter
entropy

» If the initial and final black hole area differ by AA, is it true
that
Smatter S AA/4 ?

» Note that this would have to hold for all types of matter and
all ways of converting the matter entropy into black hole
entropy!



Testing the GSL

v

Let’s do a few checks to see if the GSL might be true
There are two basic processes we can consider:
Dropping a matter system to an existing black hole, and

Creating a new black hole by compressing a matter system
or adding mass to it
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Testing the GSL

v

Let’s do a few checks to see if the GSL might be true
There are two basic processes we can consider:
Dropping a matter system to an existing black hole, and

Creating a new black hole by compressing a matter system
or adding mass to it

Let’s consider an example of the second type
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Testing the GSL

v

Spherical box of radius R, filled with radiation at
temperature at temperature T, which we slowly increase

Let Z be the effective number of massless particle species
S = Smatter ~ ZR® T3, so the entropy increases arbitrarily?!

However, the box cannot be stable if its mass, M ~ ZR3 T4,
exceeds the mass of a black hole of the same radius,

M ~ R.

A black hole must form when T ~ Z-1/4R-1/2, Just before
this point, the matter entropy is

v

v

v

v

S~ Z1/4A3/4



Testing the GSL

» After the black hole forms, the matter entropy is gone and
the total entropy is given by the black hole horizon area,
S=A/4.

» This is indeed larger than the initial entropy, Z'/4A3%/4, as
long as A 2 Z, which is just the statement that the black
hole is approximately a classical object.

» (We require this in any case since we wish to work in a
setting where classical gravity is a good description.)

» So in this example the GSL is satisfied



Entropy bounds from the GSL

» In more realistic examples, such as the formation of black
holes by the gravitational collapse of a star, the GSL is
upheld with even more room to spare

» As our confidence in the GSL grows, it is tempting to turn
the logic around and assume the GSL to be true

» Then we can derive a bound on the entropy of arbitrary
matter systems, namely

Smatter < AA/4 )

where AA is the increase in horizon entropy when the
matter system is converted into or added to a black hole



Spherical entropy bound

» For example, consider an arbitrary spherical matter system
of mass m that fits within a sphere of area A ~ R?.

» We could presumably collapse a shell of mass R/G — m
around this system to convert it into a black hole, also of
area A

» The GSL implies that Spauer < A/4, i.€., that the entropy of

any matter system is less than the area of the smallest
sphere that encloses it



Spherical entropy bound

» For example, consider an arbitrary spherical matter system
of mass m that fits within a sphere of area A ~ R?.

» We could presumably collapse a shell of mass R/G — m
around this system to convert it into a black hole, also of
area A

» The GSL implies that Spauer < A/4, i.€., that the entropy of

any matter system is less than the area of the smallest
sphere that encloses it

» In this sense the world is like a hologram!

» The amount of information needed to fully specify the
quantum state in a spherical region fits on its boundary, at
a density of order one qubit per Planck area.

» Local QFT is hugely redundant; there are only exp(A/4)
states



Bekenstein bound

» A tighter bound results from a cleverer process:

» Slowly lower the matter system into a very large black hole,
to minimize AA

» This decreases the energy of the system at infinity, by a
redshift factor, before it is dropped in

» The mass added to the black hole is nonzero, however,
because the system has finite size

» After some algebra (see hep-th/0203101), one finds
S <27MR/h

» We will return to this bound later but focus for now on the
holographic bound, S < A/4Gh



Limitations

» The derivation of the above bounds from the GSL is
somewhat handwaving

» E.g., what if some mass is shed before the black hole
forms? It is difficult to treat gravitational collapse processes
exactly except in overly idealized limits

» Moreover, the derivation implicitly assumes that we are
dealing with a matter system that has weak self-gravity
(M < R).

» Hence, it does not imply that S < A/4 for all matter
systems.

» Will shortly see that indeed, the bound does not hold for
some matter systems, if S is naively defined as the entropy
“enclosed” by the surface



Entropy bounds vs. GSL

» Modern viewpoint: CEB — GSL.
» CEB is primary and holds for all matter systems

» CEB implies the GSL in the special case where the
relevant surface is chosen to lie on the horizon of a black
hole

» But CEB holds true in situations where it clearly cannot be
derived from the GSL

» CEB reduces to statements resembling the above bounds
in certain limits



Towards formulating the CEB

» But how should we define S? Why do we need
light-sheets?

» To motivate the CEB, it is instructive to consider a more
straightforward guess at a general entropy bound and see
why it fails



Spacelike entropy bound and bounds on small regions



Spacelike Entropy Bound

time
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» SEB: S[V] < A[B]/4, for any 3-dimensional volume V
» | will now give four counterexamples to this bound



(1) Closed universe

S3
S2

S.p. N.p.

(@)
» Let V be almost all of a closed three-dimensional space,
except for a small region bounded by a tiny sphere B.

» The SEB should apply, S[V] < A[B]/4, but we can choose
S[V] arbitrarily large, and A[B] arbitrarily small



(1) Closed universe
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» Let V be almost all of a closed three-dimensional space,
except for a small region bounded by a tiny sphere B.

» The SEB should apply, S[V] < A[B]/4, but we can choose
S[V] arbitrarily large, and A[B] arbitrarily small

» (This type of “arbitrarily bad” violation can be found for any
proposed entropy bound other than the CEB; all our
counter-examples to the SEB will be of this type.)



(2) Flat FRW universe

ds? = —df? + a(t)?(dx? + dy? + dz?)

v

(E.g., with radiation, a(t) ~ t'/?
and the physical entropy density is o ~ t73/2)
Consider a volume of physical radius R at fixed time t:

v

V~R;AB]~ R?

S[V] ~ oR?

In large volumes of space (R > o~ '), the SEB is violated

v

v

S/A— occasR— oo



(3) Collapsing star

» Consider a collapsing star (idealize as spherical dust
cloud)

» lts initial entropy Sy can be arbitrarily large

» Let V be the volume occupied by the star just before it
crunches to a singularity

» (This is well after it crosses its own Schwarzschild radius,
so gravity is dominant and the surface of the star is
trapped)

» From collapse solutions we know that A[B] — 0 in this limit
» From the (ordinary) Second Law, we know that S[V] > Sy
» So we can arrange S[V| > A[B]/4 and, indeed, S/A — oo



Give up?

» Perhaps there exists no general entropy bound of the form
S < A/4, which holds for arbitrary regions?

» Instead try to characterize spatial regions that are in some
sense sufficiently small, such that the SEB always holds for
all of these “special” regions?

» E.g., interior of apparent horizon in FRW, interior of particle
horizon, interior of Hubble horizon, etc.?



Give up?

» Perhaps there exists no general entropy bound of the form
S < A/4, which holds for arbitrary regions?

» Instead try to characterize spatial regions that are in some
sense sufficiently small, such that the SEB always holds for
all of these “special” regions?

» E.g., interior of apparent horizon in FRW, interior of particle
horizon, interior of Hubble horizon, etc.?

» Not well-defined beyond highly symmetric solutions

» Counterexamples have been found to all of these
proposals, so

» Retreating from generality doesn’t help!

» The notion of a “sufficiently small spatial region” conflicts
with general covariance! (See next counterexample.)



(4) Nearly null boundaries

(a) [~

Consider an ordinary matter system of constant entropy S
Choose V such that B is Lorentz-contracted everywhere
In the null limit A[B] — 0, so again,

the SEB is violated

v

v

v

v



Covariant Entropy Bound



Null geodesic congruences

3

» Any 2D spatial surface B bounds four (2+1D) null
hypersurfaces

» Each is generated by a congruence of null geodesics L B



Expansion of a null congruence

decreasing A
area

increasing
area

> 0= @ where k2 is the affine tangent vector field to the
congruence (see Wald)

In terms of an infinitesimal area element .4 spanned by
nearby light-rays,

v

 dA/dA
A

0

v

6 < 0 <> contraction;
» 0 — —oo > caustic (“focal point”, “conjugate point to B”)



Light-sheets

v

A light-sheet of B is a null hypersurface L | B with
boundary B and ¢ < 0 everywhere on L
Note: Assuming the null energy condition (T,k2k? > 0)
holds,

» there are at least two null directions away from B for which

6 < 0 initially

» df/d\ < —62/2, so a caustic is reached in finite affine time
If we think of generating L by following null geodesics away
from B, we must stop as soon as ¢ becomes positive

In particular, we must stop at any caustic

v
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Covariant Entropy Bound

The total matter entropy on any light-sheet of B is bounded
by the area of B:

SIL(B)] < A[B]/4Gh




Allowed light-sheet directions

0 A > VA

(¢ (dl) (d2) (d3)

v

Often we consider spherically symmetric spacetimes
In a Penrose diagram, a sphere is represented by a point

The allowed light-sheet directions can be represented by
wedges

This notation will be useful as we analyze examples

v
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(1) Closed universe
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(2) Flat FRW universe

past singularity

» Sufficiently large spheres at fixed time t are anti-trapped
» Only past-directed light-sheets are allowed
» The entropy on these light-sheets grows only like R?



(3) Collapsing star

singularity

null
) infinity
event horizon

star

» At late times the surface of the star is trapped
» Only future-directed light-sheets exist
» They do not contain all of the star



(4) Nearly null boundaries

@ | (b)

» The null direction orthogonal to B is not towards the center
of the system

» The light-sheets miss most of the system, so S — 0 as
AB] -0
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AdS/CFT

Holographic screens in general spacetimes



AdS/CFT

bulk point p

Q boundary scale
y (UV cutoff) 6

bulk IR cutoff
=

boundary

» First complete, nonperturbative quantum theory of gravity

» An asymptotically AdS spacetime is described by a
conformal field theory on the boundary



AdS/CFT
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» There exists a cutoff version of this correspondence: A
CFT with UV cutoff 6 describes AdS out to a sphere of

area A
» The relation A(9) is such that the log of the dimension of

the CFT Hilbert space is of order A
» The holographic principle is manifest!



Holographic screens in general spacetimes



The world is always a hologram...
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...but we don’t yet know how the encoding works

N

bulk point p
Qi boundary scale

(UV cutoff) 8

bulk IR cutoff
=

boundary

» AdS is very special; the dual theory is a unitary field theory

sharing the same time variable
» This is related to a property of the holographic screen in

AdS



Understanding holography in cosmology is hard

» In general spacetimes, it would seem that the number of
degrees of freedom has to change as a function of the time
parameter along the screen

» The screen is not unique

» The screen can even be spacelike and it need not be
connected
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