

Relativistic D-brane Dynamics

Based on work by T.B. and Liam McAllister

Q:What are the dynamics of relativistic D-brane scattering? Consider $D3/D3(\overline{D3})$ scattering in $\mathcal{M}_{10} = \mathcal{M}_4 \times \mathcal{M}_6$.

Take-home Message:

Relativistic D-brane interactions probe energies above the string scale

Energy loss is dominated by closed string emission

Thomas Bachlechner (Cornell)

Low Velocity Limit

Non-relativistic limit is well known: (hep-th/0403001) On-shell open string production leads to trapping from massless string production:

Building Blocks

1.) Im((\vec{u}, \vec{v})) \propto # of produced strings \rightarrow Instantaneous production rate $\Gamma(\vec{d}, \vec{v})$

2.) Power loss due to graviton emission in D=6 (in a toy model):

$$\frac{P_{\rm rad}}{\rm Vol} = \frac{G_{\rm N}\lambda_{\rm closed}^k T_{\rm Dk}^2}{24\pi^2}\gamma^{12}a^4$$

Results

Note: $\omega_{\rm c} \sim \gamma^5 / l_{\rm s} \rightarrow \text{ massive closed string emission?}$

Thomas Bachlechner (Cornell)

COSMOLOGICAL UV/IR DIVERGENCES

Wei XUE McGill University

> Work with R. Brandenberger and K. Dasgupta Phys.Rev. D83 (2011) 083520

why loops?

* Interactions: Non-Gaussianity

* uv divergences : GR is nonrenormalizable
* IR divergences (Stochastic log(a)~Ht)
* de Sitter and Inflationary perturbations
* Back reaction

* Debates on log(k/μ), log(H/μ) (S. Weinberg hep-th/0506236; Senatore and Zaldarríaga arxiv:0912.2734)

Result

* The different schemes will not change the physical result. Brute-cutoff, Dimensional Regularization and Pauli-Villars

* Physical cutoff and comoving cutoff $\frac{\sigma}{\sigma} = \frac{\sigma}{h} (\delta\sigma) (\delta\sigma)$

* Inflation power spectrum is not exactly flat $\langle \Phi(x,t)^2 \rangle \sim \int d^3k H^2/k^3 \sim H^2\log(\Lambda_{IR})$ $\langle \Phi(x,t)^2 \rangle \sim \int d^3k H^2/k^3 \sim H^2(\Lambda_{IR})^{-\epsilon}/\epsilon$

Discussion

* using three regularization method, we get the same result for the loop corrections to two-point functions

* The result depends on whether the cutoff is physical or comoving.

* Inflationary IR divergence is different from de Sitter

* Linde's problem in Thermal Field Theory (perturbation theory breaks down because of the IR loops of thermal gluons)

Uplifting AdS/CFT to Cosmology

Xi Dong

SITP and SLAC, Stanford University

July 26, 2011

- AdS/CFT provides a complete description of quantum gravity in AdS.
- What about cosmological spacetimes such as dS or FRW?

Based on

- XD, Bart Horn, Eva Silverstein, Gonzalo Torroba arXiv:1005.5403 [hep-th]
- XD, Bart Horn, Shunji Matsuura, Eva Silverstein, Gonzalo Torroba arXiv:1108.???? [hep-th]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Warped compactification and the dS/dS correspondence

AdS/CFT with a UV brane or compactification manifold \Rightarrow Randall-Sundrum or warped compactification.

De Sitter space is naturally a warped compactification:

$$ds_{dS_d}^2 = dw^2 + \sin^2 \frac{w}{R_{dS}} ds_{dS_{d-1}}^2$$
$$0 \le w \le \pi R_{dS}$$

dS/dS correspondence: quantum gravity on dS_d = two QFTs living on dS_{d-1}, corresponding to the IR regions of the warped throats, plus (d-1)-dimensional gravity, corresponding to the zero mode of the *d*-dimensional graviton. $M_{d-1}^{d-3} \sim M_d^{d-2} R_{dS}$. Alishahiha, Karch, Silverstein, Tong [hep-th/0407125v2]

A brane construction for the dS/dS correspondence

Uplift known AdS/CFT examples: e.g. $AdS_3 \times S^3 \times T^4 \Rightarrow dS_3/dS_2$, $AdS_4 \times \mathbb{CP}^3 \Rightarrow dS_4/dS_3$.

Effective potential for AdS:

$$U(g) = ag^2 + cg^4,$$

$$a < 0, \ c > 0$$

Effective potential for dS:

$$U(g) = ag^2 - bg^3 + cg^4, \qquad a,b,c > 0$$

A concrete example with all moduli stabilized is given in XD, Bart Horn, Eva Silverstein, Gonzalo Torroba [arXiv:1005.5403 [hep-th]].

$$S_{
m Gibbons-Hawking} \sim S_{
m QFT} \sim rac{A}{4G_N}$$

A holographic dual of FRW spacetime

The brane construction for dS eventually decays. One decay channel is through a Coleman–de Luccia bubble

 \Rightarrow open FRW universe with a zero cosmological spacetime:

$$ds_d^2 = -dt^2 + (ct)^2 d\mathbb{H}_{d-1}^2, \quad c = \sqrt{3} \quad \text{for} \quad d = 3$$

Brane construction: start with $AdS_3 \times S^3 \times T^4$, put more than 24 (p,q) 7-branes on \mathbb{CP}^1 (the base of S^3 as a Hopf fibration). Rewrite the FRW metric as

$$ds_d^2 = c^2 (\eta^2 - w^2)^{c-1} (dw^2 - d\eta^2 + \eta^2 d\mathbb{H}_{d-2}^2)$$

This is a (time-dependent) warped metric. w = 0 is the UV and the $w = \eta$ is the IR. Can the dual QFT be UV complete and decouple from (d-1)-dimensional gravity? $M_{d-1}^{d-3} \sim t$.

Adiabaticity and Non-Gaussianity

Joel Meyers University of Texas at Austin

PITP 2011 Institute for Advanced Study July 26, 2011

arXiv:1011.4934 and 1104.5238 w/Navin Sivanandam

Non-Gaussianity

- Contains information beyond power spectrum $f_{NL}^{\rm local} = 32 \pm 21 \ (68\% \ {\rm CL})$ WMAP 7
- Single field inflation models predict small f_{NL}^{local}

$$f_{NL}^{\text{local}} = \frac{5}{12}(1 - n_s)$$

Maldacena (2002) Creminelli, Zaldarriaga (2004) Ganc, Komatsu (2010)

• A convincing detection of f_{NL}^{local} would rule out *ALL* models of single field inflation

$$\overbrace{k_2}^{k_1} \overbrace{k_3}^{k_3}$$

Adiabaticity

- Non-adiabatic modes:
 - Are generically present in multiple field models
 - Lead to superhorizon evolution of $\boldsymbol{\zeta}$
 - Can be detected in the CMB
- There are at least two ways to achieve adiabaticity:
 - Effectively single field inflation
 - Local Thermal Equilibrium

Bucher, Moodley, Turok (2001)

Model and Results

• Two-field inflation with potentials of the form:

$$W(\phi, \chi) = F[U(\phi) + V(\chi)]$$

• After passing through a short phase of effectively single field inflation we find:

 $f_{NL}^{
m local} \! \sim \mathcal{O}(arepsilon_*)$ JM, Sivanandam (2010)

• Similarly for local n-point functions we find:

$$F_{\mathrm{NL},i}^{(n)}\sim \mathcal{O}(arepsilon_*)$$
 JM, Sivanandam (2011)

How sensitive is the CMB to a Local Lens.

Anastasia Fialkov, Tel Aviv University

PiTP 2011

- Aim: Weak lensing of the CMB by a single lens that breaks statistical isotropy
- Motivation:
 - High energy theories
 - Some of the cosmic "anomalies" at large scales
- Single Lens Examples:
 - Texture (Turok & Spergel 1990)
 - Giant Void (Inoue & Silk 2007)
 - Traces of a Pre-Inflationary Point particle (Itzhaki 2008, Fialkov et al 2010)
- Previous works in this field study lensing by a giant void and a texture. Motivated by the WMAP cold spot. (Masina & Notari 2009, 2010; Das & Spergel 2009)

The Upper Bound for the Detection. The Signal to Noise from an Ideal Experiment.

Complete reconstruction of the deflection potential

The Realistic Signal to Noise.

Effect of lensing is to re-map the CMB sky

$$\tilde{T}(\theta) = T\left(\theta + \nabla \delta \psi^{\text{SL}}\right) \xrightarrow[Weak \text{ lensing}]{} \tilde{T}(\theta) = T\left(\theta\right) + \nabla \delta \psi^{\text{SL}} \nabla T\left(\theta\right)$$

Unlensed

Include Non-Gaussianity from LCDM weak lensing

Lensed

$$\left(\frac{S}{N}\right)_{OBS}^{2} = \bigotimes_{\otimes}^{\otimes} + \bigotimes_{\otimes}^{\otimes} \bigotimes_{\otimes}^{\otimes}$$

- The NG correction becomes important at l=900.
- At I = 1400 the accumulated SN²_{OBS} starts to drop. Higher order terms in loop expansion should be added to fix it.
- Plateau at 1000<l<1400. The true SN from T is: $\binom{S}{N}_{OBS} \sim \frac{1}{3} \binom{S}{N}_{IDEAL}$

A sufficient Condition for de Sitter Vacua in type IIB String Theory

Markus Rummel University of Hamburg

arXiv:1107.2115 [hep-th] with Alexander Westphal

PiTP at the Institute for Advanced Study, Princeton July 26, 2011 Goal: More general parametric understanding of the existence of dS vacua in type IIB string theory

• Moduli ϕ^a : Kähler T_i , complex structure U_i and dilaton S

$$\blacktriangleright K = -2\ln\left(\hat{\mathcal{V}}(T_i) + \alpha'^3\hat{\xi}(S)\right), W = W_0(S, U_i) + \sum_i A_i e^{-a_i T_i}$$

A sufficient Condition for de Sitter Vacua in IIB Markus Rummel

A sufficient Condition for dS vacua

Expand potential for

Ŷ ≫ *ξ̂* ⇒ Large Volume *Ŷ* ≃ γt^{3/2} ~ *O*(100...1000)

 *|W*₀| ≫ Ae^{-at} ⇒ Non-perturbative effects are small

 \Rightarrow Obtain simple 2-term potential in $\hat{\mathcal{V}}$: $\mathbf{V} \simeq \mathbf{C}_1 \frac{\hat{\xi}}{\hat{\mathcal{V}}^3} - \mathbf{C}_2 \frac{Ae^{-at}}{\hat{\mathcal{V}}^2}$

Markus Rummel

A sufficient Condition for de Sitter Vacua in IIB

Further Results:

- Arbitrary number of Kähler and complex structure moduli can be included explicitly

 Works for a whole class of Calabi-Yau threefolds! ('swiss cheese type')
- ► SUSY breaking well controlled by F-terms only ⇒ Do not need extra sector or uplifting mechanism!
- ► Sufficient condition is on geometric properties of the Calabi-Yau and fluxes W₀ ⇒ F-theory data!
- Small cosmological constant can be achieved by tuning of #U ≃ O(100) background fluxes! [Bousso, Polchinski '00]

4

Further Results:

- Arbitrary number of Kähler and complex structure moduli can be included explicitly

 Works for a whole class of Calabi-Yau threefolds! ('swiss cheese type')
- ► SUSY breaking well controlled by F-terms only ⇒ Do not need extra sector or uplifting mechanism!
- ► Sufficient condition is on geometric properties of the Calabi-Yau and fluxes W₀ ⇒ F-theory data!
- Small cosmological constant can be achieved by tuning of #U ≃ O(100) background fluxes! [Bousso, Polchinski '00]

Thank you for your attention!

Reheating, Baryon Asymmetry, Dark Matter: All You Need is Neutrino Decays.

Kai Schmitz

Deutsches Elektronen-Synchrotron

DESY, Hamburg, Germany

Based on arXiv:1008.2355 [hep-ph] and arXiv:1104.2750 [hep-ph]. In collaboration with Wilfried Buchmüller and Gilles Vertongen.

Prospects in Theoretical Physics, Institute of Advanced Study | July 26, 2011

A consistent cosmology built upon heavy neutrino decays

Idea

Origin of the epoch of radiation domination?

- Seesaw mech.: Add heavy Majorana neutrinos N_i to the SM.
- Assume dominant neutrino energy density after inflation.
- Neutrino decays produce all entropy of the hot early universe.
- ► $T_{\rm RH} \propto \sqrt{\Gamma_N} \sim 10^{9...10} \, {\rm GeV}$ for typical neutrino parameters.

A consistent cosmology built upon heavy neutrino decays

Origin of the epoch of radiation domination?

- Seesaw mech.: Add heavy Majorana neutrinos N_i to the SM.
- Assume dominant neutrino energy density after inflation.
- Neutrino decays produce all entropy of the hot early universe.
- ► $T_{\rm RH} \propto \sqrt{\Gamma_N} \sim 10^{9...10} \, {\rm GeV}$ for typical neutrino parameters.

CP-violating out-of-equilibrium neutrino decays to $\ell H \& \ell^{\dagger} H^*$.

By-products: Baryogenesis & dark matter

- Leptogenesis + SM sphaleron processes at T_L .
- Seesaw & neutrino data: $M_1 \sim T_L \sim 10^{9...10} \, {\rm GeV}$.
- Thermal production of gravitinos in SUSY QCD.
- If heavy LSP: $\Omega_{\widetilde{G}}h^2(\mathcal{T}_{\mathrm{RH}}, m_{\widetilde{G}}, m_{\widetilde{g}}) \simeq \Omega_{\mathrm{DM}}h^2$.

Non-trivial relation between SUGRA and neutrino parameters! Falsifiable through neutrino observ.

Generating a dominant nonthermal neutrino abundance

Inflaton ϕ

Hybrid infl. = Chaotic infl. + SSB

Tachyonic preheating at the end of hybrid inflation:

- Seesaw mech.: Majorana mass term violates lepton number.
- SSB of local U(1)_{B-L} ends inflation in a waterfall transition.
- ► Vacuum energy density \rightarrow *B L* Higgs bosons \rightarrow Neutrinos.

Generating a dominant nonthermal neutrino abundance

Inflaton ϕ

Hybrid infl. = Chaotic infl. + SSB

Tachyonic preheating at the end of hybrid inflation:

- Seesaw mech.: Majorana mass term violates lepton number.
- SSB of local $U(1)_{B-L}$ ends inflation in a waterfall transition.
- Vacuum energy density $\rightarrow B L$ Higgs bosons \rightarrow Neutrinos.

Quantitative numerical analysis:

- Employ Froggatt-Nielson flavor model for GUT multiplets to estimate Yukakwa couplings.
- Solve Boltzmann equations for phase space distr. funcs.
 & number densities in an expanding FLRW background.
- Scan space of SUGRA and neutrino parameters and calculate *T*_{RH}, η_β and Ω_{G̃}h² at each point.

$$\left(\frac{\partial}{\partial t} - Hp\frac{\partial}{\partial p}\right)f = \frac{C}{E}$$

$$aH\frac{d}{da}N = a^3\frac{g}{(2\pi)^3}\int d^3p\frac{C}{E}$$

$$H^2 = rac{8\pi}{3M_P^2}
ho$$

Viable scenario in large region of parameter space.

Analysis I

Connection between SUGRA and neutrino parameters

- New bound: $T_{\rm RH}$ as low as $10^7 \, {\rm GeV}$.
- Effective neutrino mass m
 _G and vice versa.

A common origin of entropy, matter and dark matter

- Idea: Neutrino decays produce all entropy of the hot early universe.
- Scenario: Dominant nonthermal neutrino abundance after tachyonic preheating.
- Result: Link between gravitino and neutrino physics that can be probed in collider searches, laboratory exp. and cosmol. obs.

Analysis I

Parameter study

Connection between SUGRA and neutrino parameters

- New bound: $T_{\rm RH}$ as low as $10^7 \, {\rm GeV}$.
- Effective neutrino mass m
 _G and vice versa.

A common origin of entropy, matter and dark matter

- Idea: Neutrino decays produce all entropy of the hot early universe.
- Scenario: Dominant nonthermal neutrino abundance after tachyonic preheating.
- Result: Link between gravitino and neutrino physics that can be probed in collider searches, laboratory exp. and cosmol. obs.

Thank you for your attention!

Gyromagnetic Factors and Atomic Clock Constraints on the Variation of Fundamental Constants

arXiv: 1107.4154

Feng Luo

collaborated with Keith Olive and Jean-Philippe Uzan

University of Minnesota

July 26, 2011

Motivation

Why study the variation of fundamental constants?

- existence of new d.o.f.
- ▶ violation of the Equivalence Principle $m_A(\alpha_i) \Rightarrow a = g_N + \delta a_A$, where δa_A depends on $\nabla \alpha_i$ and $\dot{\alpha}_i$

Constraints from atomic clock?

e.g.,
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\nu_{\mathrm{Cs}}}{\nu_{\mathrm{H}}}\right) / \left(\frac{\nu_{\mathrm{Cs}}}{\nu_{\mathrm{H}}}\right) = (32 \pm 63) \times 10^{-16} \,\mathrm{yr}^{-1}$$
$$\frac{\nu_{\mathrm{Cs}}}{\nu_{\mathrm{H}}} \propto g_{\mathrm{Cs}} \,\mu \,\alpha^{2.83}$$
where $g_{\mathrm{Cs}} = \frac{7}{9}(10 - g_{\mathrm{p}}), \,g_{\mathrm{p}} = \frac{2\mu_{\mathrm{p}}}{\mu_{\mathrm{N}}}, \,g_{\mathrm{p},\mathrm{exp}} = 5.586, \,\mu = \frac{m_{\mathrm{e}}}{m_{\mathrm{p}}}.$
$$\frac{\dot{\nu}_{AB}}{\nu_{AB}} = \lambda_{g_{\mathrm{p}}} \frac{\dot{g}_{\mathrm{p}}}{g_{\mathrm{p}}} + \lambda_{\mu} \frac{\dot{\mu}}{\mu} + \lambda_{\alpha} \frac{\dot{\alpha}}{\alpha}$$
Suppose only α vary, then $\dot{\alpha}/\alpha = (11 \pm 22)^{-16} \,\mathrm{yr}^{-1}.$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Is this interpretation correct? Can this limit be stronger or weaker? In unification theories, various fundamental constants, e.g., α , α_s , h, v, are related. So, $\frac{\dot{\alpha}}{\alpha} = \frac{1}{\lambda_{\alpha}} \frac{\dot{\nu}_{AB}}{\nu_{AB}}$ becomes $\frac{\dot{\alpha}}{\alpha} = \frac{1}{C_{\alpha}} \frac{\dot{\nu}_{AB}}{\nu_{AB}}$.

We focus on the dependence of $g_{\rm p}$ on $m_{\rm u,d,s}$ and $\Lambda_{\rm \scriptscriptstyle QCD}.$

 $g_{\rm p}$ can be given by

- constituent quark model $g_{p,NQM} = 2\left(\frac{8}{9}\frac{m_p}{M_u} + \frac{1}{9}\frac{m_p}{M_d}\right)$
- ▶ chiral perturbation theory $g_{\mathrm{p},\chi^{\mathrm{PT}}}$ depends on $M_{\pi,\mathcal{K},\eta}$, ...
- ▶ lattice QCD $g_{p,lattice}$, promising, need extrapolation

Discussion

Table: The enhancement factor $C_{\alpha}/\lambda_{\alpha}$ assuming S = 160 and R = 30 for each of the models for the proton magnetic moment and for the various combinations of clocks discussed in this article.

	Rb-Cs	H-Cs	Hg-Cs	Yb-Cs	Sr-Cs	SF ₆ -Cs
А	-54.11	1.55	1.26	1.80	1.56	-1.74
B1	0.59	7.53	4.07	10.58	7.67	4.24
B2	-16.77	5.63	3.17	7.79	5.73	2.34
B3	-10.87	6.28	3.48	8.74	6.39	2.99
С	-42.27	2.84	1.86	3.70	2.88	-0.45
HBw/oD	73.57	15.38	7.75	22.09	15.69	12.16
HBwD	-26.70	4.41	2.60	6.00	4.48	1.19
EOMS	11.61	8.60	4.57	12.14	8.76	5.38
χ PT+QCD	14.32	8.90	4.71	12.58	9.07	5.68

Finally, similar idea also applies to astrophysical systems through the measurement of transition lines. PITP Summer School Jul 26, 2011

Quantum violations of the equivalence principle in scalar-tensor theories

Riccardo Penco

Syracuse University

in collaboration with Cristian Armendariz-Picon

Motivation:

classical action not protected by symmetry

Challenge: field redefinitions

Gravitational interactions

Graviton

Scalar

Interesting limit: long-range, on-shell, non-relativistic.

Scalar interactions

Modified Gravity with Perturbative Constraints

Phys. Rev. D 79, 4 (2009)

- Motivation: Modifications to Gravity in the Infra-Red
- Particular case: f(R) Modifications

$$\mathcal{L}_{\rm Grav} = R - 2\Lambda + f(R) \qquad {\rm say} \qquad f(R) \propto \frac{\mu^4}{R} + \dots$$

- New Light Scalar
 - New Phenomenology

What Cosmological Signals = New Scalar Degree of Freedom?

Dynamics

- Spatially Flat FRW metric
- Equations of Motion are 4th Order
- \blacktriangleright 2 Solutions analytic in μ^4 , 2 ill-defined at $\mu^4=0$
- Examine behavior of analytic solution by perturbative expansion in μ^4
- Dimensionless Expansion parameter

$$\frac{\mu^4}{R(t_0)^2} = \frac{\mu^4}{(\rho_{m,0} + 4\Lambda)^2}$$

Background Evolution

Beyond Background

Can produce additional power on Large Scales

Observed deviation to Large Scale features in CMB

Places Limits on what constitutes a Signal of Dynamic Scalar mode

Thank you

Daniel Harlow

Stanford University

Operator Dictionaries and Wave Functions in Ads/CFT and dS/CFT

Generalized Friedmann Equations

BingKan Xue Second Environments Princeton University

 $PiTP \ 2011$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations

FRW metric (homogeneous and isotropic):

$$ds^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega_{2}^{2}\right)$$

Friedmann equations:

$$H^2 = \frac{1}{3} \left(\rho - \frac{3\mathbf{k}}{a^2} \right)$$
$$\dot{H} = -\frac{1}{2} (\rho + P) + \frac{\mathbf{k}}{a^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivations

FRW metric (homogeneous and isotropic):

$$ds^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega_{2}^{2}\right)$$

Friedmann equations:

$$\begin{split} H^2 &= \frac{1}{3} \Big(\rho - \frac{3\mathbf{k}}{a^2} \Big) \\ \dot{H} &= -\frac{1}{2} (\rho + P) + \frac{\mathbf{k}}{a^2} \end{split}$$

More general situations (nonflat, inhomogeneous, anisotropic) ? e.g. beginning of inflation or ekpyrosis, near the bounce ...

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

General metric in ADM form with lapse \mathcal{N} and shift β^i

 $ds^{2} = -\mathcal{N}^{2}d\tau^{2} + \gamma_{ij}(dx^{i} + \beta^{i}d\tau)(dx^{j} + \beta^{j}d\tau)$

General metric in ADM form with lapse \mathcal{N} and shift β^i

$$ds^{2} = -\mathcal{N}^{2}d\tau^{2} + \gamma_{ij}(dx^{i} + \beta^{i}d\tau)(dx^{j} + \beta^{j}d\tau)$$

Spatial hypersurfaces of constant time,

induced metric $\gamma_{ij} \implies \text{ intrinsic curvature }^{(3)}R$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

General metric in ADM form with lapse \mathcal{N} and shift β^i

$$ds^{2} = -\mathcal{N}^{2}d\tau^{2} + \gamma_{ij}(dx^{i} + \beta^{i}d\tau)(dx^{j} + \beta^{j}d\tau)$$

Spatial hypersurfaces of constant time,

induced metric $\gamma_{ij} \Rightarrow$ intrinsic curvature ⁽³⁾RTimelike unit vector normal to the hypersurface, $n_{\mu} = (-\mathcal{N}, \vec{0})$

General metric in ADM form with lapse \mathcal{N} and shift β^i

$$ds^{2} = -\mathcal{N}^{2}d\tau^{2} + \gamma_{ij}(dx^{i} + \beta^{i}d\tau)(dx^{j} + \beta^{j}d\tau)$$

Spatial hypersurfaces of constant time,

induced metric $\gamma_{ij} \Rightarrow$ intrinsic curvature ${}^{(3)}R$ Timelike unit vector normal to the hypersurface, $n_{\mu} = (-\mathcal{N}, \vec{0})$ Kinematic decomposition of the timelike congruence

$$n^{i;j} = \frac{1}{3}\theta\gamma^{ij} + \sigma^{ij} - a^i n^j$$

General metric in ADM form with lapse \mathcal{N} and shift β^i

$$ds^{2} = -\mathcal{N}^{2}d\tau^{2} + \gamma_{ij}(dx^{i} + \beta^{i}d\tau)(dx^{j} + \beta^{j}d\tau)$$

Spatial hypersurfaces of constant time,

induced metric $\gamma_{ij} \Rightarrow$ intrinsic curvature ${}^{(3)}R$ Timelike unit vector normal to the hypersurface, $n_{\mu} = (-\mathcal{N}, \vec{0})$ Kinematic decomposition of the timelike congruence

$$n^{i;j} = \frac{1}{3}\theta\gamma^{ij} + \sigma^{ij} - a^i n^j$$

volume expansion $\theta \equiv n^{i}_{;i} \implies \text{local expansion } 3H$ shear $\sigma^{ij} \equiv n^{(i;j)} - \frac{1}{3}\theta\gamma^{ij} \implies \text{anisotropy } \sigma^{2} \equiv \frac{1}{2}\sigma^{ij}\sigma_{ij}$ acceleration $a^{i} \equiv \dot{n}^{i} \equiv n_{\nu}n^{i;\nu}$

Local Friedmann equations

Stress-energy tensor of perfect fluid

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$

Energy density measured by the Eulerian observer $E = T_{\mu\nu}n^{\mu}n^{\nu}$

Local Friedmann equations

Stress-energy tensor of perfect fluid

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$

Energy density measured by the Eulerian observer $E = T_{\mu\nu}n^{\mu}n^{\nu}$ Dynamics of timelike congruence (equivalent to 3+1 Einstein eqs)

$$\begin{aligned} (\frac{1}{3}\theta)^2 &= \frac{1}{3} \left(E - \frac{1}{2} {}^{(3)}R + \sigma^2 \right) \\ \frac{1}{3}\dot{\theta} &= -\frac{1}{2} \left(\frac{4E-\rho}{3} + P \right) + \frac{1}{6} {}^{(3)}R - \sigma^2 + \frac{1}{3}a^{\mu}{}_{;\mu} \\ \frac{1}{3}\theta_{|i} &= \frac{1}{2} \left(E + P \right) U_i + \frac{1}{2}\sigma^j{}_{i|j} \\ \frac{D_F}{ds}\sigma^i{}_j &= (E+P)U^iU_j - {}^{(3)}R^i{}_j - \theta\sigma^i{}_j - n^i\sigma_{jk}a^k - \frac{1}{3}\theta n^ia_j \\ &+ a^i{}_{;j} + a^ia_j + \dot{a}^in_j - \frac{1}{3}\delta^i{}_j(E-\rho - {}^{(3)}R + a^{\mu}{}_{;\mu}) \end{aligned}$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

Homogeneous case

Recover Friedmann equations

$$H^{2} = \frac{1}{3} \left(\rho - \frac{1}{2} {}^{(3)}R + \sigma^{2} \right)$$
$$\dot{H} = -\frac{1}{2} \left(\rho + P \right) + \frac{1}{6} {}^{(3)}R - \sigma^{2}$$
$$\dot{\sigma}^{i}_{\ j} = -3H\sigma^{i}_{\ j} - {}^{(3)}R^{i}_{\ j} + \frac{1}{3}\delta^{i}_{\ j}{}^{(3)}R$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Homogeneous case

Recover Friedmann equations

$$\begin{split} H^2 &= \frac{1}{3} \left(\rho - \frac{1}{2} {}^{(3)} R + \sigma^2 \right) \\ \dot{H} &= -\frac{1}{2} \left(\rho + P \right) + \frac{1}{6} {}^{(3)} R - \sigma^2 \\ \dot{\sigma}^i{}_j &= -3H \sigma^i{}_j - {}^{(3)} R^i{}_j + \frac{1}{3} \delta^i{}_j {}^{(3)} R \\ \text{curvature} & {}^{(3)} R \propto \frac{1}{a^2} \Rightarrow w = -\frac{1}{3} \\ \text{anisotropy (flat)} & \sigma^2 \propto \frac{1}{a^6} \Rightarrow w = 1 \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Homogeneous case

Recover Friedmann equations

$$\begin{split} H^2 &= \frac{1}{3} \left(\rho - \frac{1}{2} {}^{(3)}R + \sigma^2 \right) \\ \dot{H} &= -\frac{1}{2} \left(\rho + P \right) + \frac{1}{6} {}^{(3)}R - \sigma^2 \\ \dot{\sigma}^i{}_j &= -3H \sigma^i{}_j - {}^{(3)}R^i{}_j + \frac{1}{3} \delta^i{}_j {}^{(3)}R \\ \text{curvature} & {}^{(3)}R \propto \frac{1}{a^2} \Rightarrow w = -\frac{1}{3} \\ \text{anisotropy (flat)} & \sigma^2 \propto \frac{1}{a^6} \Rightarrow w = 1 \end{split}$$

Implication: Inflation $w < -\frac{1}{3}$
Ekpyrotic contraction $w > 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

OSCILLATING BISPECTRA AND GALAXY CLUSTERING: A NOVEL PROBE OF INFLATIONARY PHYSICS WITH LARGE-SCALE STRUCTURE

Francis-Yan Cyr-Racine, UBC Fabian Schmidt, Caltech ArXiv:1106.2806

 Primordial Non-Gaussianities induce a scale-dependent bias between the matter and galaxy power spectrum.

 $P_h(k) = b_I^2 P(k)$

- We can use the bias to characterize the type of non-Gaussianities arising from Inflation.
- Focus on oscillatory Bispectra.

SCALE-DEPENDENT BIAS

RESONANT NON-GAUSSIANITY

FEATURE IN INFLATON POTENTIAL

An Effective Field Theory for Dark Energy

- Low energy descriptions of modifications to GR essentially behave like GR coupled to a scalar field, forming a scalar tensor theory
- Useful to generally parameterize dark energy models involving a scalar field
- Recent work has been performed to construct an effective field theory describing a scalar-tensor theory up to fourth order in derivatives (Weinberg 2008, Creminelli et al 2009, Park et al 2010)
- We extend these models, and in particular address the choice of conformal frame

A General Lagrangian to Four Derivatives

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left\{ \frac{m_p^2}{2} \Omega^2(\phi) R - \frac{1}{2} \epsilon M^2 g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - U(\phi) \right. \\ &+ a_1 (g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi)^2 + a_2 \Box \phi g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + a_3 (\Box \phi)^2 \\ &+ \frac{b_1}{\Lambda_m^2} T^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{b_2}{\Lambda_m^2} T g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{b_3}{\Lambda_m^2} T \Box \phi \\ &+ c_1 R^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + c_2 R g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + c_3 R \Box \phi \\ &+ d_1 W^{\mu\nu\lambda\rho} W_{\mu\nu\lambda\rho} + d_2 \epsilon^{\mu\nu\lambda\rho} W_{\mu\nu} {}^{\alpha\beta} W_{\lambda\rho\alpha\beta} \\ &+ d_3 R^{\mu\nu} R_{\mu\nu} + d_4 R^2 \\ &+ \frac{e_1}{\Lambda_m^4} T^{\mu\nu} T_{\mu\nu} + \frac{e_2}{\Lambda_m^4} T^2 + \frac{e_3}{\Lambda_m^2} R_{\mu\nu} T^{\mu\nu} + \frac{e_4}{\Lambda_m^2} RT \Big\} \\ &+ S_{\text{matter}} \left[e^{\alpha(\phi)} g_{\mu\nu} \right] \end{split}$$

Low Energy Effective Action

- Work in Einstein frame for multiple cutoff scales to be well defined
- Reduce terms which introduce new degrees of freedom
- Take limits $M \ll \Lambda_m \ll m_p$

$$S = \int d^{4}x \sqrt{-g} \left\{ \frac{m_{\rho}^{2}}{2} R - \frac{1}{2} \epsilon M^{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - U(\phi) + a_{1} (g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi)^{2} \right\}$$
$$+ S_{\text{matter}} \left[e^{\alpha (\phi, (\nabla \phi)^{2} / \Lambda_{m}^{2})} g_{\mu\nu} + \frac{\beta(\phi)}{\Lambda_{m}^{2}} \nabla_{\mu} \phi \nabla_{\nu} \phi \right]$$

What can we do with this formalism?

- Construct generic model-independent constraints
- Identify connections with other models
- Motivate searches for new models

Supernova Neutrinos

Ranjan Laha Ohio State University

PiTP 2011

Detection reactions

 $\overline{v}_e + p \rightarrow e^+ + n$

 $\nu + e \rightarrow \nu + e$

Super Kamiokande

39m

50000 tons Ring imaging Water Cherenkov detector Fiducial volume : 22.5 ktons 1000m under the ground

> Inner detector 11129 20" PMTs Outer detector 1885 8" PMTs About 40% of the inner detector is covered by the sensitive area of PMT.

Y Hayato SSI 2010

Diffuse Supernova Neutrino Background

Add Gd to Super Kamiokande

Beacom and Vagins Phys.Rev.Lett. 93 (2004) 171101 EGADS project