1 Problem sets for dS/CFT (Maldacena)

1.1 Review of the two point function computation in dS.

Consider a massless scalar field in dS_4 with metric

$$ds^2 = \frac{-d\eta^2 + dx^2}{\eta^2} \tag{1}$$

a) Write the wave equation and solve it. Show that for each Fourier mode you get the solutions $f \sim (1 + i|k|\eta)e^{-i|k|\eta}$ and its complex conjugate.

b) Write $\phi = a^{\dagger}f + af^{\dagger}$. Demand that $[a, a^{\dagger}] = 1$, use the canonical commutation relations for ϕ and π_{ϕ} and normalize f properly.

c) Define the Bunch Davies vacuum through $a|BD\rangle = 0$. Understand why this is a reasonable definition. Then compute

$$\langle BD | \phi_{\vec{k}}(\eta) \phi_{-\vec{k}}(\eta') | BD \rangle$$

d)** After defining this for each fourier mode, could you figure out how it looks once you sum over all Fourier modes?. Can you write the answer in a de Sitter invariant fashion ? Do you get a divergence?, why?

1.2 Interactions

Add a ϕ^3 interaction to the above problem and compute the three point function,

$$\langle BD | \phi_{\vec{k}_1}(\eta) \phi_{\vec{k}_2}(\eta) \phi_{\vec{k}_3}(\eta) | BD \rangle$$

Understand the Keldysh contour necessary for the computation. How do you kill off the oscillatory early time pieces ? Understand that you need to rotate the contour into the imaginary direction.

If you want a simpler problem, then consider a conformally coupled scalar field and add a ϕ^4 interaction. In this case the propagators are simpler and the computation is similar to the flat space one.

1.3 Direct computation of the wavefunction

a) Consider the action for the scalar field $S = \frac{1}{2} \int (\nabla \phi)^2$ in dS. Think about it in the flat slicing.

b) Compute the action with fixed boundary condition at some time η_c , and $\phi_b = \phi(\eta_c)$. At early times, put the positive frequency boundary condition $\phi \to e^{i|k|\eta}$.

c) Evaluate $e^{iS_{classical}}$ for the above solution.

d) Do the same in Euclidean AdS space $ds^2 = \frac{dz^2 + dx^2}{z^2}$. Again put boundary conditions and evaluate the action. Understand the relation to c)

e) Compute the derivative of the wavefunctions with respect to the boundary conditions $\frac{\delta}{\delta\phi_b(\vec{k})} \frac{\delta}{\delta\phi_b(-\vec{k})} e^{iS}|_{\phi_b=0}$. Can this be interpreted as the correlation function of a conformal field theory? Could you go to position space? Are there any IR divergencies in this case?

d) Understand why the Green's function

$$\langle 0|T\phi(\eta)\phi(\eta')|BD\rangle = f^*(\eta)f(\eta') - f(\eta)f(\eta') \quad , \quad 0 > \eta > \eta'$$
⁽²⁾

is the right one to use in the perturbative computation of the wavefunction. You could also try to normalize it correctly.

f)** You could attempt to write this answer in terms of proper distances in AdS. Namely, first go back to position space (don't forget the k dependent normalization factors) and write it in terms of proper distances. Does it have a singularity at the antipodal point?. What is the corresponding function in AdS space, and what is the antipodal point in this case.

1.4 Action for AdS_4

Compute the on shell action for AdS_4 for an S^3 boundary. Compute the action

$$S_{Euclidean} = \frac{R_{AdS}^2}{16\pi G_N} \left[-\int_{\Sigma_4} \sqrt{g}(R+6) - 2\int_{\partial\Sigma_4} K \right]$$
(3)

where K is the extrinsic curvature term, $K = \frac{1}{2}h^{ab}\partial_n h_{ab}$ where h is the metric of the boundary and n the normal direction. Write the AdS metric as

$$ds^2 = d\rho^2 + \sinh^2 \rho d\Omega_3^2 \tag{4}$$

and evaluate the action as a function of the cutoff ρ_c . Discard the divergent terms and focus on the finite ones. Write down the final answer for $\Psi = Z \sim e^{-S_E}$.

1.5 Action for dS_4

Do the same for dS_4 with the Hartle-Hawking analytic continuation. Consider the metric

$$ds^2 = -d\tau^2 + \cosh^2 \tau d\Omega_3^2 \tag{5}$$

Evaluate now $\Psi \sim e^{iS}$. Compare with the answer in the previous problem.

2 Exercises on Inflation (Creminelli)

- 1. Using symmetry arguments, calculate the tilt of the spectrum of a scalar with small mass, $m^2 \ll H^2$, in a fixed de Sitter background.
- 2. Using symmetry arguments, show that the *n*-point function of ζ in Fourier space in a generic model of inflation is of the form

$$\langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle = (2\pi)^3 \delta(\sum \vec{k}_i) F(k_i) , \qquad (6)$$

where F is an homogeneous function of the k's of degree -3(n-1).

- 3. Calculate the equal time 2-point function of a massless scalar in a fixed de Sitter background in real space. What is the physical meaning of the IR divergence?
- 4. Photons are massless, but they are not produced during inflation. Why?
- 5. A Goldstone boson, like an axion, with decay constant f_a lives during inflation and therefore gets quantum perturbations. Estimate the corrections you expect to the free field theory calculation from self interactions, i.e. the deviation from gaussianity. What happens if $H > 4\pi f_a$?

6. Consider a massless scalar φ in de Sitter space with an interaction $\frac{M}{6}\varphi^3$. Calculate the 3-point function $\langle \varphi_{\vec{k}_1}\varphi_{\vec{k}_2}\varphi_{\vec{k}_3}\rangle$.