1 Problem sets for dS/CFT (Maldacena)

1.1 Review of the two point function computation in $d S$.

Consider a massless scalar field in $d S_{4}$ with metric

$$
\begin{equation*}
d s^{2}=\frac{-d \eta^{2}+d x^{2}}{\eta^{2}} \tag{1}
\end{equation*}
$$

a) Write the wave equation and solve it. Show that for each Fourier mode you get the solutions $f \sim(1+i|k| \eta) e^{-i|k| \eta}$ and its complex conjugate.
b) Write $\phi=a^{\dagger} f+a f^{\dagger}$. Demand that $\left[a, a^{\dagger}\right]=1$, use the canonical commutation relations for ϕ and π_{ϕ} and normalize f properly.
c) Define the Bunch Davies vacuum through $a|B D\rangle=0$. Understand why this is a reasonable definition. Then compute

$$
\langle B D| \phi_{\vec{k}}(\eta) \phi_{-\vec{k}}\left(\eta^{\prime}\right)|B D\rangle
$$

d) ${ }^{* *}$ After defining this for each fourier mode, could you figure out how it looks once you sum over all Fourier modes?. Can you write the answer in a de Sitter invariant fashion ? Do you get a divergence?, why?

1.2 Interactions

Add a ϕ^{3} interaction to the above problem and compute the three point function,

$$
\langle B D| \phi_{\vec{k}_{1}}(\eta) \phi_{\vec{k}_{2}}(\eta) \phi_{\vec{k}_{3}}(\eta)|B D\rangle
$$

Understand the Keldysh contour necessary for the computation. How do you kill off the oscillatory early time pieces ? Understand that you need to rotate the contour into the imaginary direction.

If you want a simpler problem, then consider a conformally coupled scalar field and add a ϕ^{4} interaction. In this case the propagators are simpler and the computation is similar to the flat space one.

1.3 Direct computation of the wavefunction

a) Consider the action for the scalar field $S=\frac{1}{2} \int(\nabla \phi)^{2}$ in dS. Think about it in the flat slicing.
b) Compute the action with fixed boundary condition at some time η_{c}, and $\phi_{b}=\phi\left(\eta_{c}\right)$. At early times, put the positive frequency boundary condition $\phi \rightarrow e^{i|k| \eta}$.
c) Evaluate $e^{i S_{\text {classical }}}$ for the above solution.
d) Do the same in Euclidean AdS space $d s^{2}=\frac{d z^{2}+d x^{2}}{z^{2}}$. Again put boundary conditions and evaluate the action. Understand the relation to c)
e) Compute the derivative of the wavefunctions with respect to the boundary conditions $\frac{\delta}{\delta \phi_{b}(\vec{k})} \frac{\delta}{\delta \phi_{b}(-\vec{k})}$ $\left.e^{i S}\right|_{\phi_{b}=0}$. Can this be interpreted as the correlation function of a conformal field theory? Could you go to position space? Are there any IR divergencies in this case?
d) Understand why the Green's function

$$
\begin{equation*}
\langle 0| T \phi(\eta) \phi\left(\eta^{\prime}\right)|B D\rangle=f^{*}(\eta) f\left(\eta^{\prime}\right)-f(\eta) f\left(\eta^{\prime}\right), \quad 0>\eta>\eta^{\prime} \tag{2}
\end{equation*}
$$

is the right one to use in the perturbative computation of the wavefunction. You could also try to normalize it correctly.
f)** You could attempt to write this answer in terms of proper distances in $A d S$. Namely, first go back to position space (don't forget the k dependent normalization factors) and write it in terms of proper distances. Does it have a singularity at the antipodal point?. What is the corresponding function in $A d S$ space, and what is the antipotal point in this case.

1.4 Action for $A d S_{4}$

Compute the on shell action for $A d S_{4}$ for an S^{3} boundary. Compute the action

$$
\begin{equation*}
S_{\text {Euclidean }}=\frac{R_{A d S}^{2}}{16 \pi G_{N}}\left[-\int_{\Sigma_{4}} \sqrt{g}(R+6)-2 \int_{\partial \Sigma_{4}} K\right] \tag{3}
\end{equation*}
$$

where K is the extrinsic curvature term, $K=\frac{1}{2} h^{a b} \partial_{n} h_{a b}$ where h is the metric of the boundary and n the normal direction. Write the AdS metric as

$$
\begin{equation*}
d s^{2}=d \rho^{2}+\sinh ^{2} \rho d \Omega_{3}^{2} \tag{4}
\end{equation*}
$$

and evaluate the action as a function of the cutoff ρ_{c}. Discard the divergent terms and focus on the finite ones. Write down the final answer for $\Psi=Z \sim e^{-S_{E}}$.

1.5 Action for $d S_{4}$

Do the same for $d S_{4}$ with the Hartle-Hawking analytic continuation. Consider the metric

$$
\begin{equation*}
d s^{2}=-d \tau^{2}+\cosh ^{2} \tau d \Omega_{3}^{2} \tag{5}
\end{equation*}
$$

Evaluate now $\Psi \sim e^{i S}$. Compare with the answer in the previous problem.

2 Exercises on Inflation (Creminelli)

1. Using symmetry arguments, calculate the tilt of the spectrum of a scalar with small mass, $m^{2} \ll H^{2}$, in a fixed de Sitter background.
2. Using symmetry arguments, show that the n-point function of ζ in Fourier space in a generic model of inflation is of the form

$$
\begin{equation*}
\left\langle\zeta_{\vec{k}_{1}} \ldots \zeta_{\vec{k}_{n}}\right\rangle=(2 \pi)^{3} \delta\left(\sum \vec{k}_{i}\right) F\left(k_{i}\right), \tag{6}
\end{equation*}
$$

where F is an homogeneous function of the k 's of degree $-3(n-1)$.
3. Calculate the equal time 2-point function of a massless scalar in a fixed de Sitter background in real space. What is the physical meaning of the IR divergence?
4. Photons are massless, but they are not produced during inflation. Why?
5. A Goldstone boson, like an axion, with decay constant f_{a} lives during inflation and therefore gets quantum perturbations. Estimate the corrections you expect to the free field theory calculation from self interactions, i.e. the deviation from gaussianity. What happens if $H>$ $4 \pi f_{a}$?
6. Consider a massless scalar φ in de Sitter space with an interaction $\frac{M}{6} \varphi^{3}$. Calculate the 3-point function $\left\langle\varphi_{\vec{k}_{1}} \varphi_{\vec{k}_{2}} \varphi_{\vec{k}_{3}}\right\rangle$.

