
1 Problem sets for dS/CFT (Maldacena)

1.1 Review of the two point function computation in dS.

Consider a massless scalar field in dS4 with metric

ds2 =
−dη2 + dx2

η2
(1)

a) Write the wave equation and solve it. Show that for each Fourier mode you get the solutions
f ∼ (1 + i|k|η)e−i|k|η and its complex conjugate.

b) Write φ = a†f + af †. Demand that [a, a†] = 1, use the canonical commutation relations for φ
and πφ and normalize f properly.

c) Define the Bunch Davies vacuum through a|BD〉 = 0. Understand why this is a reasonable
definition. Then compute

〈BD|φ~k(η)φ−~k(η
′)|BD〉

d)** After defining this for each fourier mode, could you figure out how it looks once you sum
over all Fourier modes?. Can you write the answer in a de Sitter invariant fashion ? Do you get a
divergence?, why?

1.2 Interactions

Add a φ3 interaction to the above problem and compute the three point function,

〈BD|φ~k1(η)φ~k2(η)φ~k3(η)|BD〉

Understand the Keldysh contour necessary for the computation. How do you kill off the oscillatory
early time pieces ? Understand that you need to rotate the contour into the imaginary direction.

If you want a simpler problem, then consider a conformally coupled scalar field and add a φ4

interaction. In this case the propagators are simpler and the computation is similar to the flat space
one.

1.3 Direct computation of the wavefunction

a) Consider the action for the scalar field S = 1
2

∫
(∇φ)2 in dS. Think about it in the flat slicing.

b) Compute the action with fixed boundary condition at some time ηc, and φb = φ(ηc). At early
times, put the positive frequency boundary condition φ→ ei|k|η.

c) Evaluate eiSclassical for the above solution.
d) Do the same in Euclidean AdS space ds2 = dz2+dx2

z2
. Again put boundary conditions and

evaluate the action. Understand the relation to c)
e) Compute the derivative of the wavefunctions with respect to the boundary conditions δ

δφb(~k)

δ

δφb(−~k)

eiS |φb=0. Can this be interpreted as the correlation function of a conformal field theory? Could you
go to position space? Are there any IR divergencies in this case?

d) Understand why the Green’s function

〈0|Tφ(η)φ(η′)|BD〉 = f∗(η)f(η′)− f(η)f(η′) , 0 > η > η′ (2)
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is the right one to use in the perturbative computation of the wavefunction. You could also try to
normalize it correctly.

f)** You could attempt to write this answer in terms of proper distances in AdS. Namely, first
go back to position space (don’t forget the k dependent normalization factors) and write it in terms
of proper distances. Does it have a singularity at the antipodal point?. What is the corresponding
function in AdS space, and what is the antipotal point in this case.

1.4 Action for AdS4

Compute the on shell action for AdS4 for an S3 boundary. Compute the action

SEuclidean =
R2
AdS

16πGN

[
−
∫

Σ4

√
g(R+ 6)− 2

∫
∂Σ4

K

]
(3)

where K is the extrinsic curvature term, K = 1
2h

ab∂nhab where h is the metric of the boundary and
n the normal direction. Write the AdS metric as

ds2 = dρ2 + sinh2 ρdΩ2
3 (4)

and evaluate the action as a function of the cutoff ρc. Discard the divergent terms and focus on the
finite ones. Write down the final answer for Ψ = Z ∼ e−SE .

1.5 Action for dS4

Do the same for dS4 with the Hartle-Hawking analytic continuation. Consider the metric

ds2 = −dτ2 + cosh2 τdΩ2
3 (5)

Evaluate now Ψ ∼ eiS . Compare with the answer in the previous problem.

2 Exercises on Inflation (Creminelli)

1. Using symmetry arguments, calculate the tilt of the spectrum of a scalar with small mass,
m2 � H2, in a fixed de Sitter background.

2. Using symmetry arguments, show that the n-point function of ζ in Fourier space in a generic
model of inflation is of the form

〈ζ~k1 . . . ζ~kn
〉 = (2π)3δ(

∑
~ki)F (ki) , (6)

where F is an homogeneous function of the k’s of degree −3(n− 1).

3. Calculate the equal time 2-point function of a massless scalar in a fixed de Sitter background
in real space. What is the physical meaning of the IR divergence?

4. Photons are massless, but they are not produced during inflation. Why?

5. A Goldstone boson, like an axion, with decay constant fa lives during inflation and therefore
gets quantum perturbations. Estimate the corrections you expect to the free field theory
calculation from self interactions, i.e. the deviation from gaussianity. What happens if H >

4πfa?
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6. Consider a massless scalar ϕ in de Sitter space with an interaction M
6 ϕ

3. Calculate the 3-point
function 〈ϕ~k1ϕ~k2ϕ~k3〉.

3 Problems for Aspects of Eternal Inflation (Susskind)

1. Derive the metric of de Sitter space in the flat slicing.

2. Derive the metric of de Sitter space in the static slicing.

3. Prove that the spatial part of the metric in the static slicing corresponds to the metric of a 3
dimensional hemisphere.

4 Mechanisms for Inflation (E. Silverstein)

1) Consider a model of inflation based on a µ4−pλφp potential (in the regime φ > MP ), with
0 < p ≤ 2.

a) Determine the conditions on µ and the field range of φ during inflation to obtain Ne e-foldings
of inflation, with a primordial power spectrum of the correct COBE-normalized magnitude over the
e-foldings visible in the CMB.

b) Analyze the radiative stability of this model. Noting that, as discussed in the lectures, µ
can arise as an exponentially small scale, discuss whether or not inflation over Ne ≥ 60 e-foldings
requires fine-tuning of the effective action from the Wilsonian point of view.

c) Discuss additional stability criteria which can arise in a UV completion of inflationary models
(using string theory as a concrete example if you wish).

2) In this problem you will explore a few features of string compactifications and scalar fields that
descend from them.

a) Consider compactifying a D-dimensional theory of gravity on a D−4 dimensional manifold X
of linear size R. To be concrete, you can consider X to be a sphere, a torus, or compact hyperbolic
space. This leads to a number of scalar fields in four dimensions, one of which corresponds to
the volume VX of X. By dimensionally reducing the Einstein term, show that the corresponding
canonically normalized scalar field σX is given by

VX = V0e
cXσX/MP

with cX a number which is not parametrically small. If you feel energetic, include the string theory
dilaton Φ and analyze the combined system of Φ and σX in the same way.

b) An important ingredient in string theory compactification is the orientifold. Without needing
too much detail, this object sources a negative gravitational potential, but also introduces a Z2

identification of space transverse to it (reflecting all the coordinates transverse to its extended
directions). Discuss the difference between this and, say, a negative mass particle (or negative
mass Schwarzchild solution) in terms of stability of the theory and validity of the second law of
thermodynamics. (For the latter part, recall that the area of a black hole behaves like entropy.)

c) In the lectures we consider how axions b =
∫

ΣB work in string theory, with terms of the form
|dCp + B ∧ dCp−2|2 appearing in the effective action in addition to the kinetic energy |dB|2. The
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latter term respects a gauge symmetry, B → B+ dΛ1, where Λ1 is a on-form gauge potential. Show
that the former term also respects this symmetry, with an appropriate transformation law for Cp.

d) In the lectures we are also discussing brane motion inside compactifications. Consider for
example D3-branes in a warped region. Consider an AdS5 ×X5 throat

ds2 =
r2

R2
(−dt2 + d~x2) +

R2

r2
dr2 + ds2

X5

cutoff at r = rUV and connected to a compactification. A 3-brane can move in r, with canonically
normalized field φ ∼ r/α′. Compute the four-dimensional Planck mass as a function of the maximum
value of the canonically normalized field φUV ∼ rUV /α′ and the geometry of the compact dimensions.
Using the Lyth bound, convert this to a bound on the tensor to scalar ratio as a function of these
quantities.

3) Derive the equations of motion for the homogeneous field and perturbations for inflation governed
by action S = −

∫
d4x
√
−g[(φ4/λ)

√
1− λ(∂µφ∂µφ)/φ4−V (φ)]. Show explicitly that inflation occurs

on a steep potential, one which does not satisfy the slow roll conditions.
4) Consider the model of warped D-brane slow-roll inflation discussed in the lectures. Estimate the
tension of cosmic strings produced at the end (in suitable cases) as a function of the parameters of
the model.

4


