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1. Introduction and Motivation

• Much of the dynamics of string theory is encoded in the low energy effective

action.

This action describes the coupling of light modes of the string.

• Because we are interested in theories of both open and closed strings, we

can consider open string as well as closed string effective actions.

But there are also couplings between open and closed string modes.

In these lectures we will study the bosonic part of the open string effective

action including the coupling to closed string modes. We will not study the

purely closed string action.

• We will work in type IIB superstring theory, with a Euclidean spacetime.

This is mainly for notational convenience.
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• The bosonic light closed-string modes in type IIB string theory are:

NS-NS: gij, Bij, ϕ

R-R: C(0), C
(2)
i1i2

, C
(4)
i1...i4

, C
(6)
i1...i6

, C
(8)
i1...i8

, C
(10)
i1...i10

• To have open-string modes, we need a D-brane. Let us take it to be a

Euclidean D9-brane, spanning all 10 dimensions. Then the bosonic light

open-string modes are:

Ai

• We will study the coupling of Ai to the NS-NS fields listed above. These

will include the self-couplings of Ai. Hence the object of our study will be

the action:

SNS-NS[Ai; gij, Bij, ϕ]

There will not be time to study the actions involving Ramond-Ramond fields,

although these are extremely interesting too.
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• On general grounds we can guess some properties of this action.

For example, the gauge field should be a propagating field and its kinetic

term must be gauge invariant and reparametrization invariant, therefore we

expect a term

∼
∫

d10x gikgjlFijFkl

in SNS-NS.

• The full action is not known. But there is a convenient approximation

which reveals much of the dynamics, the approximation of slowly varying

field strengths.

In this approximation, we keep all powers of Fij itself, but drop its

derivatives:

l3s∂F, l4s∂∂F, ..., ln+2
s ∂nF ¿ 1

where ls =
√

2πα′ is the string length.

• We will learn a lot about the open-string effective action in this

approximation.
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• We work in a closed-string background of constant g, B, ϕ. In particular,

we take Bij 6= 0 in all the 10 directions, and of maximal rank.

• The key result will be that open-string actions can be written in many

different ways.

One of these ways will look quite familiar, while the others will involve

noncommutative multiplication of fields. Thus, the description of open-

string actions involve a noncommutative algebra over spacetime, or

noncommutative geometry.

Whether we use the commutative or noncommutative formalism depends on

the problem at hand.

The existence of many different formalisms admits new insights into various

issues in open-string theory.
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2. Open String Effective Actions

• We start by deriving the action SNS-NS[Ai; gij, Bij, ϕ] in conventional
(commutative) variables.

(i) The Boundary Propagator

• Consider the Euclidean world-sheet action for an open string in a background
gauge field Ai, and closed string backgrounds gij, Bij. We will take the
closed string fields to be constant for now.

The worldsheet is the upper half plane, with coordinates

τ : −∞ < τ < ∞; σ : 0 ≤ σ < ∞
and we will also use z = τ + iσ.

The action is:

S(A, g, B; X) =
1

4πα′
∫

dσ dτ gij ∂aX
i∂aX

j − i

2

∫
dσ dτ Bij εab∂aX

i∂bX
j

− i
∫

dτ Ai(X) ∂τXi
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We see that gij, Bij couple over the bulk of the worldsheet, while Ai couples

on the boundary at σ = 0.

• Under the transformation of the gauge field

δAi = ∂iΛ(X)

the action is invariant:

δ
(
−i

∫
dτ Ai(X) ∂τXi

)
= −i

∫
dτ ∂iΛ(X) ∂τXi = −i

∫
dτ ∂τΛ(X) = 0

This is the (linearized) spacetime gauge invariance for the U(1) gauge field

Ai(X).

• There is also an invariance under the transformation:

δBij = ∂iΛj − ∂jΛi, δAi = −Λi

This is easy to check. Note that both the open string field Ai and the closed

string field Bij transform together. This is important.
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• The worldsheet equations of motion satisfied by X are the Laplace equation:

∂z∂z Xi = 0

together with the boundary condition:
[
gij ∂σXj + 2πiα′(B + F )ij ∂τXj

]

σ=0
= 0

Notice that the dependence on Ai and Bij arises only through the gauge-
invariant combination (B + F )ij.

• It is convenient to define:

Fij ≡ 2πα′ (B + F )ij

in terms of which the boundary condition becomes:
[
gij ∂σXj + iFij ∂τXj

]

σ=0
= 0

or in terms of complex coordinates,

(g + F)ij ∂zX
j

∣∣∣∣∣σ=0
= (g −F)ij ∂zX

j
∣∣∣∣∣σ=0
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• To study the quantized worldsheet theory, we compute the propagator:

〈Xi(z, z)Xj(z′, z′)〉 = Kij(z, z; z′, z′)
This satisfies the differential equation

∂z∂zK
ij = −2πα′ δ2(z − z′)

along with the boundary condition:

(g + F)ij ∂zK
jk

∣∣∣∣∣σ=0
= (g −F)ij ∂zK

jk
∣∣∣∣∣σ=0

The general solution of the first equation is

Kij(z, z; z′, z′) = −α′
(
gij ln |z − z′|+ f ij(z) + f ij(z)

)

where f, f are analytic functions of z, z respectively. These functions are
then chosen to solve the boundary condition.

• It is an easy exercise to show that

(g + F)ij f jk(z) =
1

2
(g −F)ij gjk ln(z − z′) + const.

(g −F)ij f jk(z) =
1

2
(g + F)ij gjk ln(z − z′) + const.
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Thus the propagator is:

Kij(z, z; z′, z′) = −α′

gij ln |z − z′|+ 1

2

{
(g + F)−1(g −F)g−1

}ij
ln(z − z′)

+
1

2

{
(g −F)−1(g + F)g−1

}ij
ln(z − z′)




Let us evaluate this on the boundary of the string worldsheet, by taking
z = τ + iε, z′ = τ ′+ iε with the limit ε → 0 taken at the end. Then, using:

ln(τ − τ ′ + 2iε) = ln |τ − τ ′|+ iπ
(
1− θ(τ − τ ′)

)

ln(τ − τ ′ − 2iε) = ln |τ − τ ′|+ iπ θ(τ − τ ′)
we find:

Kij(τ ; τ ′) = −α′

2


 1

g + F g
1

g −F


ij

ln |τ − τ ′|

+ iπ


 1

g + F F 1

g −F


ij

ε(τ − τ ′)



where ε(x) = +1 (x > 0), = −1 (x < 0).
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• This formula has profound implications for open-string theory. It is useful

to assign symbols for the tensors that appeared in the boundary propagator:

Gij(F) ≡

 1

g + F g
1

g −F


ij

θij(F) ≡ −2πα′

 1

g + F F 1

g −F


ij

Then,

Kij(τ ; τ ′) = −2α′Gij(F) ln |τ − τ ′|+ i

2
θij(F) ε(τ − τ ′)

• The tensor Gij(F) can be thought of as an “open-string metric”, since it

determines the log term in the boundary propagator.

The tensor θij gives rise to a sort of noncommutativity, as we will see shortly.

We will now use this boundary propagator to determine the open-string

effective action.
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(ii) Derivation of DBI Action

• To obtain the low-energy effective action for the gauge field, we need to

expand the worldsheet theory about a background field Xi, and compute

the (divergent) one-loop counterterm:

−i
∫

dτ Γi(A(X), Λ) ∂τXi

where Λ is an ultraviolet cutoff.

Setting Γi to zero gives a condition on the gauge field Ai(X), equivalent to

worldsheet conformal invariance, or vanishing of the β-function.

That gives the spacetime equation of motion, from which the action can be

reconstructed.
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• Performing the background field expansion

Xi = Xi + ξi

where Xi is an arbitrary classical solution of the worldsheet equations of

motion, we find:

S(X) = S(X) +
∫ δS

δXi

∣∣∣∣∣X=X
ξi +

1

2

∫ δ2S

δXiδXj

∣∣∣∣∣X=X
ξiξj + · · ·

The linear term in ξi vanishes as X is a solution of the equation of motion.

The quadratic term is easily evaluated:

1

2

∫ δ2S

δXiδXj

∣∣∣∣∣X=X
ξiξj =

1

4πα′



∫
dσdτ gij ∂aξ

i∂aξ
j

+ i
∫

dτ
(
∂iFjk ∂τXj ξiξk + Fij ξj∂τξi

) 
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This gives us a vertex for the following one-loop diagram:

ξi

∂iFjk ∂τXj

ξk

• From this we find the correction to the worldsheet action:

i

4πα′
∫

dτ ∂iFjk ∂τXj Kik(τ, τ ′)
∣∣∣∣∣τ=τ ′

where we have ignored possible UV finite terms.
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Recalling the formula for the boundary propagator, we have:

lim
τ→τ ′

Kij(τ ; τ ′) = −2α′Gij(F) ln Λ + (finite)

and hence the equation of motion is:

∂iFjk Gik(F) ≡ ∂iFjk


 1

g + F g
1

g −F


ik

= 0

• When we think of Gij(F) as the (inverse) open-string metric, then this
looks just like the free Maxwell equations.

But this does not mean the action is the Maxwell action, since Gij(F)
depends on F . We have to find an action that reproduces the full nonlinear
equation above.

• It turns out that the desired open-string effective action is:

SNS-NS[Ai; gij, Bij] =
1

gs

∫
d10x

√
det(g + F)
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It is a slightly lengthy exercise to show that:

∂i




δ

δ(∂iAj)

√
det(g + F)


 = −

√
det(g + F) Gjk(F) ∂iFkl G

li(F)

Since the factor
√
det(g + F) is nonzero and the matrix Gjk(F) is invertible,

it follows that setting the above expression to zero is equivalent to:

∂iFkl G
li(F) = 0

which is the desired equation of motion. At lowest order in F this is

equivalent to the Maxwell equations:

∂iFkl g
li = 0

but in general, as we noted, it has nonlinear corrections.
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• The action

SNS-NS[Ai; gij, Bij] =
1

gs

∫
d10x

√
det(g + F)

=
1

gs

∫
d10x

√
det(g + 2πα′(B + F ))

is called the Dirac-Born-Infeld (DBI) action.

Expanding this action to quadratic order in F , it is easily seen that it is

proportional to the usual action of free Maxwell electrodynamics:

SNS-NS[Ai; gij, Bij] ∼
∫

Fij F ij + · · ·

This is consistent with the fact that the linearized equations of motion are

just Maxwell’s equations.
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• For F = 0, the DBI action reduces to:

SNS-NS[Ai; gij = 0, Bij = 0] =
1

gs

∫
d10x

√
det g = T V

where V is the world-volume spanned by the D9-brane. This tells us that

the coefficient of the action should be the tension of the brane:

Tp =
1

gs (2π)p (α′)
p+1
2

We are ignoring the factors other than 1
gs

, but they should always be

understood to be present.

• Since gs = eϕ for constant dilaton ϕ, we have also fixed the dilaton

dependence of the action.



[20]

3. Noncommutative Open String Actions

(i) Rewriting the DBI Action

• We will now recast the DBI action in a different form. For this, let us first
define

Gij ≡ Gij(F = 0) =


 1

g + 2πα′B g
1

g − 2πα′B



ij

θij

2πα′ ≡
θij(F = 0)

2πα′ = −

 1

g + 2πα′B 2πα′B 1

g − 2πα′B



ij

We abbreviate Gij by G−1. We also define the matrix Gij, abbreviated G,

to be the matrix inverse of Gij.

Thus we have defined two new constant tensors G−1, θ in terms of the
original constant tensors g, B.

In particular,

G−1 +

θ

2πα′


ij

=


 1

g + 2πα′B



ij
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• It is illuminating to rewrite the DBI Lagrangian in terms of the new tensors.

This is achieved by writing:

1

gs

√
det(g + 2πα′(B + F )) =

1

gs

√√√√√√√det




1

G−1 + θ
2πα′

+ 2πα′F



=
1

gs

1
√
det

(
1 + Gθ

2πα′
)

√
det (G(1 + θF ) + 2πα′F )

=
1

gs

√
det(1 + θF )

√
det

(
1 + Gθ

2πα′
)

√√√√√det


G + 2πα′F 1

1 + θF




Defining

F̂ = F
1

1 + θF
, Gs = gs

√√√√√det


1 +

Gθ

2πα′



we end up with the relation:

1

gs

√
det(g + 2πα′(B + F )) =

1

Gs

√
det(1 + θF )

√
det(G + 2πα′F̂ )
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• The relation between F and F̂ can be easily inverted, leading to:

F = F̂
1

1− θF̂

from which it also follows that:

1 + θF =
1

1− θF̂

Hence we have:

1

gs

√
det(g + 2πα′(B + F )) =

1

Gs

1
√
det(1− θF̂ )

√
det(G + 2πα′F̂ )

In what follows, we must be careful to remember that the above equations

were obtained in the strict DBI approximation of constant F .
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• Apart from the factor
√
det(1− θF̂ ) in the denominator, which we will deal

with later, the RHS looks like a DBI Lagrangian with a new string coupling

Gs, metric Gij and gauge field strength F̂ , and no B-field.

Let us therefore tentatively define the action:

ŜDBI =
1

Gs

∫ √
det(G + 2πα′F̂ )

(ii) F̂ as a Gauge Field Strength

• We will first try to understand this action for its own sake. Can F̂ really be

thought of as a gauge field strength? If so, what is its gauge potential?

Let us start by expanding the relation through which we defined F̂ , to lowest

order in θ:

F̂ ij = Fij − Fik θklFlj +O(θ2)
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Inserting the definition of Fij, we get:

F̂ ij = ∂iAj − ∂jAi

+ θkl(∂iAk ∂jAl − ∂iAk ∂lAj − ∂kAi ∂jAl + ∂kAi ∂lAj)

+O(θ2)

We can make a nonlinear redefinition of Ai to this order, which absorbs

three of the four terms linear in θ:

Âi = Ai − θkl(Ak ∂lAi +
1

2
Ak ∂iAl) +O(θ2)

Indeed, it is easy to show that

∂iÂj − ∂jÂi = ∂iAj − ∂jAi

+ θkl(∂iAk ∂jAl − ∂iAk ∂lAj − ∂kAi ∂jAl −Ak ∂lFij)

Note that we should drop the last term here, proportional to ∂lFij, because

we are working in the approximation of constant F .
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With the above definition, we find that

F̂ ij = ∂iÂj − ∂jÂi + θkl∂kÂi ∂lÂj

(in the last term we have replaced A by Â, since we are working to linear
order in θ.)

It is clear that there is no further redefinition of Â that will absorb the last
term. However, we note that this term is:

θkl∂kÂi ∂lÂj = {Âi, Âj}
where {, } is the Poisson bracket with Poisson structure θ.

• Thus, to linear order in θ, we have found that:

F̂ ij = ∂iÂj − ∂jÂi + {Âi, Âj}
This looks like a non-Abelian gauge field strength, except that there is a
Poisson bracket instead of a commutator.

In mechanics, we know that the Poisson bracket of classical theory lifts to
a commutator in quantum theory. Something similar happens here.
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• A theorem of Kontsevich (stated informally) says that a Poisson bracket

of this kind can be lifted in a unique way to a commutator under

noncommutative multiplication:

{f, g} ⇒ −i(f ∗ g − g ∗ f)

where

f(x) ∗ g(x) = e
i
2θij ∂

∂xi
∂

∂yj f(x) g(y)

∣∣∣∣∣∣x=y

This is called the Moyal-Weyl product. It is a noncommutative but

associative product.

By “lifting” we mean going from linear order in θ to all orders. Because

there is a unique way to perform this lift, there must be a unique map from

A to Â which solves the equation (for constant F ):

F̂ = F
1

1 + θF

to all orders in θ.
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• We conclude that the new field strength F̂ ij is a noncommutative field

strength related to its gauge potential Âi by:

F̂ ij = ∂iÂj − ∂jÂi − i[Âi, Âj]∗

The map

F̂ ij = Fik


 1

1 + θF



k

j

Âi = Ai − θkl(Ak ∂lAi +
1

2
Ak ∂iAl) +O(θ2)

is known as the Seiberg-Witten map.

As already indicated, we have only considered this map in the DBI

approximation of constant field strength Fij.

Later we will explain how to go beyond this approximation.
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(iii) The Prefactor

• To complete the story of the DBI action we must understand the prefactor
that we ignored: √

det(1− θF̂ )

Unless we find an explanation for this, we cannot claim that commutative
and non-commutative DBI actions are physically equivalent.

• Actually, for constant F , all the actions we have been writing are infinite.
So we cannot really compare commutative and noncommutative actions.

If we want fields to fall off fast enough at infinity, we must allow them to
vary. The explanation for this factor will emerge only when we consider
varying fields, or equivalently, modes of nonzero momentum.

That in turn will come about when we allow the relevant closed-string
background, in this case the dilaton, to vary.

To do this, we need to understand carefully the nature of gauge invariance
in noncommutative gauge theory, to which we now turn our attention.
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4. Properties of Noncommutative Gauge Theory

• In this section we focus our attention on gauge theories where multiplication

is defined through the ∗-product:

f(x) ∗ g(x) = e
i
2θij ∂

∂xi
∂

∂yj f(x) g(y)

∣∣∣∣∣∣x=y

= f(x) g(x) +
i

2
θij ∂if(x) ∂jg(x) + · · ·

Some formal properties of this product are:

(i) f ∗ g 6= g ∗ f

(ii) f ∗ (g ∗ h) = (f ∗ g) ∗ h

(iii)
∫

dx f ∗ g =
∫

dx g ∗ f =
∫

dx fg

(iv)
∫

dx [f, g]∗ = 0

The last two properties clearly require the integrand to fall off sufficiently

fast at infinity.
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• The simplest such theory is noncommutative electrodynamics:

S = −1

4

∫
dx F̂ ij ∗ F̂

ij
= −1

4

∫
dx F̂ ij F̂

ij

where

F̂ ij = ∂iÂj − ∂jÂi − i[Âi, Âj]∗

Indeed, this action arises from the noncommutative DBI action
√
det(G + 2πα′F̂ )

if we expand it to quadratic order in F̂ .

• Noncommutative electrodynamics is different from noncommutative Yang-

Mills theory. In the latter case, F̂ would be N ×N matrices, besides having

the ∗-product structure. We will have little to say about this situation in

these lectures.
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• What is the gauge transformation for noncommutative electrodynamics? We

easily guess that it must be:

δÂi = ∂iΛ + i[Λ, Ai]∗

Using manipulations familiar from Yang-Mills theory, we find that

δF̂ ij = i[Λ, F̂ ij]∗

Then, the gauge variation of the action is:

δS = −1

4

∫
dx [Λ, F̂ ij ∗ F̂

ij
]∗ = 0

Note that the Lagrangian is not gauge invariant, only the action is invariant.

Gauge invariance comes about after performing the integral.

This is reminiscent of the fact that in non-Abelian gauge theory, gauge

invariance is achieved only after taking the trace.

Apparently the integral over non-commutative fields is like a trace.
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• We can gain some insight into this by noting that with the ∗-product, the

coordinates of spacetime satisfy:

[xi, xj]∗ = i θij

Thus, noncommutative field theory can be thought of as field theory on a

noncommutative spacetime.

In this formalism, we would promote the coordinates to operators x̂i

satisfying:

[x̂i, x̂j] = i θij

There would no longer be a Moyal product, instead noncommutativity would

be due to the coordinates being noncommuting operators. Here we will stick

to the Moyal product notation, with the coordinates being ordinary numbers.

• Let us now show that the generators of noncommutative gauge

transformations are just translations. First, observe that:

eia·x ∗ xj = (xi + θjiai) ∗ eia·x
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On general functions we have:

eia·x ∗ f(x) = f(x + θa) ∗ eia·x

Now we can recast the noncommutative gauge transformation

δF̂ ij(x) = i
[
Λ, F̂ ij

]

∗
as follows. Define the Fourier transform of the gauge parameter by:

Λ(x) =
∫

dk eik·x Λ̃(k)

Then,

[Λ(x), F̂ ij(x)] =
∫

dk Λ̃(k)
[
eik·x, F̂ ij(x)

]

=
∫

dk Λ̃(k)
(
F̂ ij(x + θk)− F̂ ij(x)

)
eik·x
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• This fact gives us an important insight into why the Lagrangian of

noncommutative gauge theory is not gauge invariant.

It will also provide the solution to this and other difficulties, including

ultimately the role of the prefactor in the DBI action.
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5. Open Wilson Lines

• Let us exhibit in a slightly different language the fact that only the zero-
frequency mode of the noncommutative Lagrangian is gauge invariant, while
the other modes are not.

• Define the Fourier modes of a gauge theory Lagrangian by

S(k) =
∫

dx L̂
(
Â(x)

)
∗ eik.x

Let the finite gauge transformations be given by:

U(x) =
(
eiΛ(x)

)

∗
where the ∗ subscript means that the exponential is defined as a power series
with ∗-products.

If the Lagrangian is appropriately constructed from F̂ ij, it will transform as:

L̂
(
Â(x)

)
→ U(x) ∗ L̂

(
Â(x)

)
∗ U−1(x)
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It follows that

S(k) →
∫

dx U(x) ∗ L̂
(
Â(x)

)
∗ U−1(x) ∗ eik.x

=
∫

dx U(x) ∗ L̂
(
Â(x)

)
∗ eik.x ∗ U−1(x− θk)

=
∫

dx U−1(x− θk) ∗ U(x) ∗ L̂
(
Â(x)

)
∗ eik.x

Clearly the effect of the gauge transformation cancels only at k = 0.

This is not really a big surprise. Because noncommutative gauge

transformations are spacetime translations, there are no local gauge-

invariant observables in noncommutative gauge theory.

But all is not lost. Even though we cannot make gauge-invariant functions

of x, we can make gauge-invariant functions of the Fourier momenta k.
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• The inspiration for this comes from a physical notion. In non-Abelian gauge

theories, the Wilson line is a non-local operator

W (C) = P exp
(
−i

∫

C
Ai(x) dxi

)

Here the gauge field Ai(x) is an N ×N matrix, and therefore W (C) is also

a matrix.

C denotes a contour in spacetime, which can be either open or closed.

P denotes path-ordering, which means that we multiply the exponentials

over little bits of the path. If the path is broken into infinitesimal pieces

C = C1 ∪ C2 ∪ · · · ∪ Cn n →∞

then:

P e−i
∫
C Ai(x) dxi ≡ lim

n→∞
e
−i

∫
C1

Ai(x) dxi
e
−i

∫
C2

Ai(x) dxi · · · e−i
∫
Cn Ai(x) dxi
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• Let us first choose C to be an open contour, from x1 to x2:

x1 x2

Then, under a (finite) local gauge transformation by U(x), under which

Ai(x) → i U(x) ∂iU
−1(x) + U(x) Ai(x) U−1(x)

we have

W (C) → U(x1) W (C) U−1(x2)

We now briefly recall why W (C) transforms this way.
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• Take an infinitesimal contour, C ∼ ∆xi. Then

W (∆x) = exp
(
−i Ai(x)∆xi

)

∼ 1− i Ai(x)∆xi

→ 1− i


i U(x) ∂iU

−1(x) + U(x) Ai(x) U−1(x)


∆xi

∼ U(x)
(
1− i Ai(x)∆xi

)
U−1(x + ∆x)

∼ U(x) W (∆x) U−1(x + ∆x)

Multiplying these factors over every infinitesimal piece C1, C2, · · · , Cn of a

finite contour gives the desired result. It is clear from this why we need the

path ordering.

The above result also tells us that tr W (C) is gauge invariant only for closed

contours, x1 = x2.
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• The analogous story goes through easily for noncommutative gauge theory.

This time we use the gauge field Âi(x), which transforms under

noncommutative gauge transformations as:

Âi(x) → i U(x) ∗ ∂iU
−1(x) + U(x) ∗ Â(x) ∗ U−1(x)

Under these transformations, the Wilson line

W (C) = P∗ exp
(
−i

∫

C
Âi(x) dxi

)

transforms to:

W (C) → U(x1) ∗W (C) ∗ U−1(x2)

• In the next section we make use of this result by starting with an open

Wilson line, and using its lack of gauge invariance to compensate for the

gauge non-invariance of the noncommutative action.
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6. Gauge Invariant Noncommutative Actions

• Let us put together two ingredients.

On one hand, we have the momentum-k mode of a noncommutative gauge

theory Lagrangian, which fails to be gauge invariant:
∫

dx L̂
(
Â(x)

)
∗ eik.x →

∫
dx U−1(x− θk) ∗ U(x) ∗ L̂

(
Â(x)

)
∗ eik.x

On the other, we have an open Wilson line

W (C) = W (x1, x2) = P∗ exp
(
i

∫ x2
x1

Âi(x) dxi
)

which also fails to be gauge invariant:

W (C) → U(x1) ∗W (C) ∗ U−1(x2)

Suppose we combine the two.
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A natural object that one can form from both of them is the product:

∫
dx L̂

(
Â(x)

)
∗W (C) ∗ eik.x =

∫
dx L̂

(
Â(x)

)
∗ P∗ e−i

∫ x2
x1 Âi dxi ∗ eik.x

Under a noncommutative gauge transformation, this goes to:

∫
dx U(x) ∗ L̂

(
Â(x)

)
∗ U−1(x) ∗ U(x1) ∗ P∗ e−i

∫ x2
x1 Âi dxi ∗ U−1(x2) ∗ eik.x

If we choose the contour to start at xi
1 = xi and end at xi

2 = xi + θijkj

then we see that the above is gauge invariant for every k.

• In principle this still allows for any shape of the contour. But we will choose

the simplest one, a straight line:

xi xi + θijkj

and justify it later.
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• One final step is required before we can write the gauge invariant
noncommutative action for open strings. In the above, the Lagrangian is
evaluated at the starting point of the Wilson line. Pictorially:

X
L̂(x)

xi xi + θijkj

which corresponds to the term

L̂
(
Â(x)

)
∗ P∗ e−i

∫ x+θk
x Âi dxi

But we could equally well insert L̂ at any other point x′i along the Wilson
line, as long as we keep it inside the path ordering sign:

X
L̂(x′)

xi xi + θijkj

This would correspond to:

P∗
{
e−

∫ x+θk
x Âi dxi ∗ L̂

(
Â(x′)

)}

and would also give a gauge invariant action S(k).
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• The most democratic option is to smear every operator in L̂ along the
contour of the open Wilson line.

Suppose for example that

L̂
(
Â(x)

)
= −1

4
F̂ ij(x) ∗ F̂

ij
(x)

then the smeared version is:

−1

4

∫
dx

∫ 1
0

dτ1

∫ 1
0

dτ2 P∗
{
F̂ ij(xi + θijkjτ1) ∗ F̂

ij
(xi + θijkjτ2) ∗ exp(−i

∫ x+θk
x

Âi dxi
}

As τ1 and τ2 vary from 0 to 1, each operator in the Lagrangian gets smeared
over the location of the Wilson line. The result is gauge invariant as before,
since everything is inside path ordering.

Introducing the notation L∗ to denote the combined operation of smearing
and path ordering, we can write the above as:

−1

4

∫
dx L∗

{
F̂ ij(x) ∗ F̂

ij
(x) ∗ e−i

∫ x+θk
x Âi dxi

}
∗ eik.x
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• This gives us our final prescription to write a gauge invariant “action” (as

a function of the momentum k) for every local gauge covariant Lagrangian

L̂
(
Â(x)

)
in noncommutative gauge theory:

∫
dx L∗

{
L̂

(
Â(x)

)
∗ e−i

∫ x+θk
x Âi dxi

}
∗ eik.x

Applying this to the Dirac-Born-Infeld Lagrangian:

L̂DBI

(
Â(x)

)
=

1

Gs

√
det(G + 2πα′F̂ )

we get the noncommutative DBI action:

ŜDBI(k) =
1

Gs

∫
dx L∗

{√
det(G + 2πα′F̂ ) ∗ e−i

∫ x+θk
x Âi dxi

}
∗ eik.x
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• Let us recall our earlier discussion of the DBI action. The Seiberg-Witten

map between commutative and noncommutative gauge fields, in the strict

DBI approximation, was written:

F = F̂
1

1− θF̂

We had also obtained the relation:

1

Gs

√
det(G + 2πα′F̂ ) =

1

gs

√
det(1− θF̂ )

√√√√√det


g + 2πα′


B + F̂

1

1− θF̂







The second term on the RHS is the commutative DBI action expressed

in terms of F̂ , and we had promised an explanation of the prefactor√
det(1− θF̂ ), which is now about to emerge.
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• This relation gives us an alternative form of the proposed noncommutative

DBI action:

ŜDBI(k) =

1

gs

∫
dx L∗





√
det(1− θF̂ ) ∗

√√√√det

(
g + 2πα′

(
B + F̂

1

1− θF̂

))
∗ e−i

∫ x+θk
x Âi dxi



 ∗ eik.x

As a recipe, this is clear: start with the commutative action, replace F in

terms of F̂ , and insert two extra factors,
√
det(1− θF̂ ) and the open Wilson

line. Finally, perform the L∗ operation over everything.

We can now announce our principal result:

• Claim: The above action is equal to the commutative DBI action:

SDBI(k) =
1

gs

∫
dx

√
det(g + 2πα′(B + F )) eik.x

under an appropriate Seiberg-Witten map, in the approximation of slowly

varying fields, and



[48]

• In particular, this claim justifies our various assumptions, such as the fact
that we took a straight open Wilson line, and that we took the democratic
option of smearing all operators over the straight contour.

• Let us now turn to the extra factor
√
det(1− θF̂ )

that we originally found when relating commutative and noncommutative
actions.

Suppose the field strengths are all strictly constant. Then the expression on
the previous page can be written:

ŜDBI(k) =
1

gs

√√√√√det


g + 2πα′


B + F̂

1

1− θF̂





×

∫
dx L∗

{√
det(1− θF̂ ) ∗ e−i

∫ x+θk
x Âi dxi

}
∗ eik.x

Amazingly, the second line is equal to δ(k)! In other words the open Wilson
line cancels out the effect of the prefactor, leaving behind the first line which
is the commutative DBI action.
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• To be more precise, it is an exact result in noncommutative gauge theory

that ∫
dx L∗

{√
det(1− θF̂ ) ∗ e−i

∫ x+θk
x Âi dxi

}
∗ eik.x = δ(k)

This result, the “topological identity”, actually holds for all F , and not just

in the DBI approximation.

It is a purely mathematical property of noncommutative gauge fields, and

not of any particular action.

It is quite a subtle identity. Naively, the open Wilson line itself reduces to 1

when we take k → 0. But the identity says this is not quite true. We get 1

only if we first multiply by the prefactor
√
det(1− θF̂ ) and then take k → 0.

Unfortunately, there is no elementary proof of this identity. The proofs

in the literature rely on the Chern-Simons action, or on the relation of

noncommutativity to matrix theory, neither of which we have explored here.

So, for these lectures it is stated without proof, though we may return to it

later.
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• To summarize, we have found a gauge invariant noncommutative action

for every momentum k, which is equal to the commutative action in the

approximation of slowly varying (not necessarily constant) F .

This action should physically be thought of as the coupling of open-string

fields to a varying dilaton of momentum k.

In the final section, we will briefly touch upon a few important directions

raised by the study of noncommutativity.
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7. Summary of Further Directions

(i) Freedom in the Description

• The fundamental relation that we used to define Gij and θij was:


 1

G



ij

+
θij

2πα′ =


 1

g + 2πα′B



ij

This expression arose naturally, but it is not unique. Seiberg and Witten

showed that one can have a family of noncommutative descriptions starting

with the more general relation:


 1

G + 2πα′Φ



ij

+
θij

2πα′ =


 1

g + 2πα′B



ij

where Φij is an antisymmetric tensor called the “description parameter”.

From this point of view, we have been working in the Φ = 0 description.
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• In fact, there is a noncommutative DBI action for every Φ. In particular,

consider the choice:

Φij = Bij

Inserting this into the defining relation, we see that in this case,

θij = 0, Gij = gij

In other words, we have obtained the commutative description.

• Another interesting choice is

Φij = −Bij

for which we find
θij

2πα′ =


 1

B



ij

• From this we learn that the description parameter continuously interpolates

between the commutative and various noncommutative descriptions.
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We can now imagine varying θ with fixed physical backgrounds g, B, simply

by varying Φ. This makes manifest that noncommutativity is an option.

However, θ is always 0 when B = 0.

• From the relations

F̂ = F
1

1 + θF
, F = F̂

1

1− θF̂

we see that θ should always be chosen to avoid having

F = −θ−1

where the noncommutative description breaks down. Likewise, for

F̂ = θ−1

it is the commutative description that breaks down. For generic field

strengths, both descriptions are simultaneously valid.
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(ii) Derivative Corrections

• We have worked in the DBI approximation. Clearly it is interesting to go

beyond that.

In fact, noncommutativity gives us information about the derivative

corrections to the DBI action.

This works as follows. Suppose the full open-string action in the

commutative description is

SDBI + ∆SDBI

where the second term contains all the derivative corrections.

Similarly, in the noncommutative description we have:

ŜDBI + ∆ŜDBI
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If we believe the two descriptions are equivalent at a fundamental level, we

expect the exact equality:

SDBI + ∆SDBI = ŜDBI + ∆ŜDBI

However, because the ∗-product involves derivatives, there is not an exact

equality of SDBI and ŜDBI. In fact, we have argued that:

SDBI = ŜDBI +O(∂F )

Remarkably, there is a limit in which derivative corrections are completely

suppressed only on the noncommutative side :

α′ ∼ √
ε → 0, gij ∼ ε, Bij fixed

This is called the Seiberg-Witten limit. It is easy to check that in this limit,

Gij remains finite.
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• As the derivative expansion is an expansion in powers of α′, one would expect

all corrections to vanish as α′ → 0.

This expectation holds in the noncommutative case because Gij is used to

contract tensors, and it remains fixed. But on the commutative side, gij is

used to contract tensors, and it becomes singular.

As a result, infinitely many derivative corrections survive the Seiberg-Witten

limit. We then have:

[∆SDBI]SW limit = [ŜDBI]SW limit − [SDBI]SW limit

Indeed, all the corrections surviving in the LHS are encapsulated in

noncommutative ∗-products!

• This suggests that noncommutativity could give us a complete understanding

of open-string actions beyond the DBI approximation – an important

program that needs to be completed.
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(iii) Couplings to RR Fields

• Let us briefly consider the couplings of open-string modes to Ramond-

Ramond fields. At the commutative level, these are expressed in the action:

SR-R[Ai; C
(2p)
i1i2...i2p

] =
1

gs

∫ 5∑

r=0
C(2r) ∧ eF

where wedge products are intended. This action is topological in that it

does not depend explicitly on a metric. It is also called the Chern-Simons

action, SCS.

The notation above can be made more explicit by writing:

SCS =
1

gs

∫ 
C(10) + C(8) ∧ F +

1

2
C(6) ∧ F ∧ F + · · ·




where of course, F ≡ 2πα′(B + F ).
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By analogy with the DBI case, the noncommutative Chern-Simons action

can be written:

ŜCS(k) =
1

gs

5∑

r=0
C(2r)∧

∫
L∗





√
det(1− θF̂ ) ∗ e

(
B+F̂ 1

1−θF̂

)

∗ e−i
∫ x+θk
x Âidxi



∗e

ik.x

In this case we can actually extract new information from the proposed

equivalence of commutative and noncommutative actions.

This is because we know from independent calculations that the 10-form

and 8-form RR couplings do not receive derivative corrections.

This leads to two identities:

(i)
∫

dx L∗
{√

det(1− θF̂ ) ∗ e−i
∫ x+θk
x Âi dxi

}
∗ eik.x = δ(k)

which is our old friend the topological identity, and
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(ii)
∫

dx L∗




√
det(1− θF̂ ) ∗


F̂

1

1− θF̂



ij
∗ e−i

∫ x+θk
x Âi dxi



∗e

ik.x = Fij(k)

This is an exact expression for the Seiberg-Witten map beyond the DBI

approximation!

Much more can be said, but we will have to leave this topic here.
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(iv) Noncommutative Solitons

• Besides the stable branes in type II superstring theory, there are also unstable

branes that can decay into lower-dimensional branes or into the vacuum.

This decay is described by a tachyon on the unstable brane going into its

vacuum or into a solitonic configuration.

In general, tachyonic solitons are hard to study because we do not know

enough about the detailed form of the tachyon potential. However, if we

turn on a B-field along the unstable brane and switch to a noncommutative

description, life becomes much easier.

The tachyon is now a noncommutative field, and its solitons have a universal

description that is largely independent of the shape of its potential.

It has been possible to give a rather explicit description of the decay of

unstable branes using this idea. This is one more concrete application of

noncommutativity in string theory.
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(v) Nonabelian Noncommutativity

• In these lectures, we only discussed the noncommutative versions of Abelian

theories.

We should try to generalize these discussions to the non-Abelian case. In

that case, despite some progress, the explicit form of the DBI/CS actions,

the topological identity and the Seiberg-Witten map are not yet known.

This is an important open problem.
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THE END


